《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 汽車應(yīng)用中磁阻傳感器系統(tǒng)的建模和仿真
汽車應(yīng)用中磁阻傳感器系統(tǒng)的建模和仿真
摘要: 磁阻效應(yīng)支持汽車內(nèi)的多種傳感器應(yīng)用,。磁阻傳感器主要用來測量機(jī)械系統(tǒng)的速度和角度。這樣,,磁阻傳感器就成為電氣元件,、磁性元件和機(jī)械元件所組成的復(fù)雜系統(tǒng)的一部分,。因?yàn)樗性紩?huì)影響系統(tǒng)的反應(yīng),所以在規(guī)劃系統(tǒng)及其操作時(shí)要非常重視對整個(gè)系統(tǒng)的仿真,。下面重點(diǎn)討論這種系統(tǒng)的建模和仿真,。
Abstract:
Key words :

磁阻效應(yīng)支持汽車內(nèi)的多種傳感器應(yīng)用。磁阻傳感器主要用來測量機(jī)械系統(tǒng)的速度和角度,。這樣,,磁阻傳感器就成為電氣元件、磁性元件和機(jī)械元件所組成的復(fù)雜系統(tǒng)的一部分。因?yàn)樗性紩?huì)影響系統(tǒng)的反應(yīng),,所以在規(guī)劃系統(tǒng)及其操作時(shí)要非常重視對整個(gè)系統(tǒng)的仿真,。下面重點(diǎn)討論這種系統(tǒng)的建模和仿真。

  電子技術(shù)的應(yīng)用日益廣泛,,對汽車的發(fā)展具有決定性的促進(jìn)作用,。未來的進(jìn)一步發(fā)展也會(huì)在很大程度上由不斷創(chuàng)新的電子元件驅(qū)動(dòng)。傳感器技術(shù)可檢測車輛及其周圍環(huán)境條件,,因此具有特殊意義,。有多種傳感器系統(tǒng)可用于此類目的,例如加速度傳感器,、溫度傳感器或轉(zhuǎn)矩傳感器等,。磁場測量傳感器在汽車內(nèi)尤其常見,主要用于機(jī)械變量的非接觸式檢測,。通常這種傳感器通過霍爾元件,,或者基于各向異性磁阻 (AMR) 效應(yīng)實(shí)現(xiàn)。與使用霍爾效應(yīng)的解決方案相比,,AMR 傳感器有許多優(yōu)點(diǎn),,例如抖動(dòng)更少、靈敏度更高,。但在提高準(zhǔn)確性或降低整體系統(tǒng)成本方面,,二者不分伯仲。除了在電子羅盤中利用磁阻傳感器測量地球磁場之外,,尤其是借助磁場指示機(jī)械系統(tǒng)的運(yùn)動(dòng)和位置時(shí),,可使用磁阻傳感器確定角度和速度。防滑系統(tǒng),、引擎和傳送控制都需要這種數(shù)據(jù),。產(chǎn)生磁場的永磁體的機(jī)械設(shè)計(jì)和選擇會(huì)在很大程度上影響測量數(shù)據(jù)的獲取。因此,,在部署整個(gè)系統(tǒng)之前使用仿真技術(shù)進(jìn)行深入分析非常重要,,以確保達(dá)到目標(biāo)功能并降低成本。因此,,在前期開發(fā)過程中建立系統(tǒng)模型,,之后用于支持后續(xù)產(chǎn)品的開發(fā),對于解決設(shè)計(jì)過程中產(chǎn)生的這類問題也能發(fā)揮重要作用,。下文將探討新型速度傳感器的整體系統(tǒng)建模和仿真,。

  

 

  圖 1 AMR 傳感器系統(tǒng)包含兩個(gè)封裝

  

 

  圖 2 各向異性磁阻效應(yīng)

  信號檢測

  現(xiàn)代傳感器系統(tǒng)主要由兩個(gè)元件組成 —基本傳感器和信號處理專用集成電路 (ASIC)(圖 1)。現(xiàn)已證明,,后來由 Lord Klevin 于 1857 年發(fā)現(xiàn)的各向異性磁阻效應(yīng)特別適用于檢測磁場,。首先考慮通常具有多種磁疇結(jié)構(gòu)的鐵磁性材料,。這些稱之為韋斯磁疇的結(jié)構(gòu),其內(nèi)部磁化的方向彼此不同,。如果將這種材料平鋪為一薄層,,那么磁化矢量處于材料層平面方向。另外,,可較精確地假設(shè)只存在一個(gè)磁疇,。當(dāng)這種元件暴露于外部磁場中時(shí),后者會(huì)改變內(nèi)部磁化矢量的方向,。如果同時(shí)一股電流通過該元件,,就會(huì)產(chǎn)生電阻(圖 2),這取決于電流和磁化之間的角度,。當(dāng)電流和磁化方向彼此成直角時(shí),,電阻最小,當(dāng)二者平行時(shí),,電阻最大,。電阻變化的大小取決于材料。鐵磁性材料的性質(zhì)也決定對溫度的依賴性,。電阻最大變化為 2.2% 并且對溫度變化反應(yīng)良好的最佳合金是 81% 的鎳和 19% 的鐵組成的合金,。恩智浦所有傳感器系統(tǒng)中的基本傳感器都采用這種強(qiáng)磁鐵鎳合金。在惠斯登電橋電路中單獨(dú)配置幾個(gè) AMR 電阻,,以增強(qiáng)輸出信號并改善溫度反應(yīng)特性。此電路也可在制造過程中進(jìn)行微調(diào),。圖 3 顯示如何在裸片上配置 AMR 元件,。

  確定速度的裝置多半由兩個(gè)組件組成:編碼器輪和傳感器系統(tǒng)。編碼器輪可以是主動(dòng)式或被動(dòng)式,。主動(dòng)輪已磁化,,因此 MR 傳感器可檢測北極和南極之間的變化。如果是被動(dòng)輪,,則由一種齒狀結(jié)構(gòu)代替磁化,。如圖 1 所示,傳感器頭上也必須有一塊用于產(chǎn)生磁場的永磁體,。接下來,,我們只討論因公差極小而著稱的被動(dòng)編碼器輪。當(dāng)傳感器對稱地面對一個(gè)齒或者被動(dòng)輪兩齒之間的空隙時(shí),,這不會(huì)使 AMR 元件的磁化矢量產(chǎn)生任何偏斜,。忽略外部噪聲場并考慮橋電路時(shí),輸出信號獲得零值,。然而,,如果傳感器頭處于齒邊緣前面,,則磁輸入信號達(dá)到極值。齒/空隙或空隙/齒切換類型的函數(shù)結(jié)果與磁輸入信號正弦曲線的最小值或最大值非常接近,。

  信號處理

  為了確定速度,,將磁輸入信號編碼處理為電脈沖序列,而且通常通過 7/14 mA 協(xié)議傳送,。在最簡單的情況下,,可使用比較器產(chǎn)生脈沖序列。通常會(huì)向比較器電路添加磁滯以消除低噪聲的影響,。然而,,這種施密特觸發(fā)器在噪聲水平較高的條件下不能確保其功能性。例如,,傳感器頭和編碼器輪之間空隙出現(xiàn)顯著波動(dòng)會(huì)導(dǎo)致磁輸入信號振幅發(fā)生波動(dòng),。如果振幅變得很小,甚至不再超過或低于磁滯臨界值,,則不管編碼器輪的位置如何,,輸出信號都保持其有效工作時(shí)的最后狀態(tài)。在檢測 ABS 系統(tǒng)中的轉(zhuǎn)速時(shí),,傳感器和編碼器輪之間的距離可能會(huì)出現(xiàn)這種變化,。當(dāng)存在負(fù)載變化(例如突然轉(zhuǎn)向動(dòng)作),橫向作用于輪上的離心力會(huì)在輪軸上產(chǎn)生彎曲力矩,。這將改變安裝在與傳感器相關(guān)的軸上的編碼器輪的位置,,這些傳感器是與輪懸架相結(jié)合的。

  磁位移也會(huì)影響系統(tǒng)的正常運(yùn)轉(zhuǎn),。例如,,噪聲場可使實(shí)際測量信號加強(qiáng)或減弱,致使施密特觸發(fā)器的臨界值被高估或低估,。然而,,位移不僅是由外部場引起的。被動(dòng)輪極高的速度可使輪中產(chǎn)生渦流,,而這又會(huì)產(chǎn)生磁噪聲場,。所產(chǎn)生的位移會(huì)影響操作的可靠性。

  為消除此噪聲對輸出信號的影響,,另一封裝中裝入了信號處理專用集成電路(ASIC),。后者也包含一個(gè)線路驅(qū)動(dòng)器,以便為信號處理和高電壓接口提供電源電壓(圖 1),。圖 4 所示為信號處理架構(gòu),。用于故障排除的中心元件為包括調(diào)式放大器、偏移抵消電路和智能比較器,。根據(jù)傳感器和編碼器輪之間的距離,,可調(diào)式放大器可以與信號級匹配,。對于偏移抵消電路,有一種控制系統(tǒng)(與高通濾波器不同)可消除偏移,,同時(shí)將系統(tǒng)頻率保持為 0?Hz,。否則,就不可能檢測到停止不動(dòng)的編碼器輪,。智能比較器的臨界值是可變的,,并且可設(shè)置,使磁滯處于信號振幅的 20% 和 45% 之間,。這可確保充分抑制噪聲,,而且振幅突降達(dá) 50% 也不會(huì)影響系統(tǒng)的正常運(yùn)轉(zhuǎn)。模擬前端的個(gè)別組件控制則通過數(shù)字接口實(shí)現(xiàn),。所述系統(tǒng)均利用仿真技術(shù)開發(fā)和驗(yàn)證,。下文將概略介紹系統(tǒng)開發(fā),同時(shí)闡述如何使用模型來改進(jìn)設(shè)計(jì),。

  

 

  圖 3 裸片上的 AMR 元件配置

  

 

  圖 4 現(xiàn)代速度傳感器的信號處理原理

  

 

  圖 5 網(wǎng)格 — 磁場有限元模擬的起點(diǎn)

系統(tǒng)仿真

 

  要開發(fā)傳感器系統(tǒng),,首先必須對預(yù)期的磁輸入信號有一個(gè)總體了解。首先要了解編碼器輪和傳感器頭上永磁體的標(biāo)準(zhǔn)規(guī)格,,以及預(yù)期尺寸和公差,。通過 ANSYS 方法進(jìn)行 FEM 仿真可確定磁場。這里就有對編碼器輪,、傳感器元件和磁體進(jìn)行建模的問題(圖 5),。然后便可根據(jù)傳感器元件和編碼器輪之間的距離,確定與之呈函數(shù)關(guān)系的磁場強(qiáng)度,。圖 6 是傳感器橋上的磁輸入信號與距離呈函數(shù)關(guān)系的三維圖示,。很容易看出輸入信號呈正弦曲線,信號振幅隨距離增加而明顯減小,。除了距離之外,位置偏離也會(huì)導(dǎo)致振幅減小,。例如,,如果傳感器頭不在編碼器輪前面的中心位置,那么信號振幅也會(huì)減小,。根據(jù) FEM仿真方法,,這樣也可將機(jī)械規(guī)范轉(zhuǎn)化成預(yù)期磁變量。與氣隙變化不同,,傾斜會(huì)導(dǎo)致偏移,,這同樣會(huì)影響系統(tǒng)的正常運(yùn)轉(zhuǎn)。FEM 仿真也可以預(yù)估其造成的影響(圖 7),,而且結(jié)果可直接轉(zhuǎn)化為可容許的位置公差,。

  確定磁場之后是傳感器系統(tǒng)仿真,。AMR 元件的電阻變化是各向異性磁阻效應(yīng)的直接結(jié)果。這樣,,磁場仿真的結(jié)果會(huì)導(dǎo)致代表信號處理中輸入信號的電阻發(fā)生變化,。對模擬前端進(jìn)行建模可采用 Simulink,。這種行為模型是概念設(shè)計(jì)的產(chǎn)物,,標(biāo)志著產(chǎn)品開發(fā)的起點(diǎn)。每個(gè) Simulink 塊對應(yīng)一個(gè)模擬信號處理組件,,例如放大器或過濾器,。但是,尚未考慮模擬組件的控制部分,,這由數(shù)字系統(tǒng)實(shí)現(xiàn),。HDL 設(shè)計(jì)則仿真通過數(shù)字方法實(shí)現(xiàn)的功能,而且在完成產(chǎn)品開發(fā)之后就會(huì)最終成形,。因此,,整體系統(tǒng)仿真是 Simulink 對模擬組件的行為模型以及 ModelSim 對 HDL 設(shè)計(jì)的共同仿真(圖8)??赏ㄟ^仿真從概念階段順利過渡到 HDL 設(shè)計(jì)及后續(xù)階段,。在共同仿真中,可用 ModelSim 中部署的 Verilog 代碼逐漸代替 Simulink 參考模型,,從而可逐項(xiàng)驗(yàn)證 HDL 設(shè)計(jì),。可持續(xù)進(jìn)行此過程,,直到在 Verilog 中實(shí)現(xiàn)整個(gè)數(shù)字部件,,而模擬系統(tǒng)部件仍保持為 Simulink 模型。此工具組合也已證明對 IC 評估同樣有用,。自始至終使用這種工具可以更容易理解 IC 行為,,并可創(chuàng)建用來分析和解釋任何錯(cuò)誤的框架。這些工具的主要好處在于,,能夠更快速,、更準(zhǔn)確地答復(fù)客戶的查詢,以及更好地了解與環(huán)境條件相關(guān)的傳感器功能,。

  

 

  圖 6 與傳感器頭和編碼器輪間距離呈函數(shù)關(guān)系的磁輸入信號模擬

  

 

  圖 7 為確定可容許的位置公差而進(jìn)行的磁場計(jì)算

  

 

  圖 8 模擬前端和數(shù)字塊的共同仿真

  結(jié)論

  通過此項(xiàng)建模,,可以分析與輸入信號呈函數(shù)關(guān)系的系統(tǒng)行為。圖 9 中的第一張圖表顯示通過改變傳感器和編碼器輪之間的距離而產(chǎn)生的磁輸入信號,。此信號是有限元件仿真結(jié)果,,之后 AMR 效應(yīng)可將此信號轉(zhuǎn)化成傳感器橋的電輸出信號。中間的圖表是模擬信號處理的結(jié)果,。下面一張圖表顯示輸出信號,。此器件使用 A 7/14/28 mA 協(xié)議,。這種協(xié)議可用來傳送額外信息,例如感測旋轉(zhuǎn)或氣隙長度,。除了這些結(jié)果之外,,也可以檢查數(shù)字控制的運(yùn)行情況。圖 10 顯示的是 ModelSim 中的信號圖象實(shí)例,。

  通過MATLAB 進(jìn)行仿真控制并結(jié)合其他仿真器可創(chuàng)造更多選擇,。首先,例如可使模擬自動(dòng)化,。然后可以使用大量算法在 MATLAB 中進(jìn)行信號仿真,。例如,對所需系統(tǒng)和信號參數(shù)進(jìn)行蒙特卡羅 (Monte Carlo) 仿真,,隨后進(jìn)行自動(dòng)化分析,。通過 FEM 仿真器(例如 NASYS),可以擴(kuò)展所仿真的系統(tǒng)組件,,甚至包括 MR 傳感器頭和相關(guān)編碼器,,從而將系統(tǒng)視圖擴(kuò)展到傳感器周圍直接相關(guān)的區(qū)域。圖 11 顯示的是用于此目的的整個(gè)工具鏈,。

  

 

  圖 9 模擬結(jié)果:電輸出信號比對磁輸入信號

  

 

  圖 10 數(shù)字系統(tǒng)元件的仿真

  

 

  圖 11 完整的仿真鏈

  總結(jié)

  許多汽車應(yīng)用中都采用基于 AMR 效應(yīng)的現(xiàn)代智能傳感器,。對傳感器系統(tǒng)的要求自然會(huì)因應(yīng)用而異。在部署整個(gè)系統(tǒng)之前先進(jìn)行系統(tǒng)仿真可確保各項(xiàng)功能符合規(guī)范,。假設(shè)發(fā)現(xiàn)磁變量,、機(jī)械變量和電變量之間存在復(fù)雜的相互影響,只用一件簡單的仿真工具不能解決問題,。此時(shí)需要結(jié)合使用不同工具,,每件工具都是針對特定任務(wù)的最佳解決方案。因此使用磁場仿真器來確定磁輸入信號,,同時(shí)Simulink對模擬輸入進(jìn)行仿真,。HDL設(shè)計(jì)之后對模擬部件進(jìn)行數(shù)字控制仿真。最終整個(gè)系統(tǒng)實(shí)現(xiàn)全面仿真,。建模已成為預(yù)開發(fā)的一部分,,并隨著產(chǎn)品開發(fā)的進(jìn)程不斷優(yōu)化改進(jìn)。最后就會(huì)得到經(jīng)過驗(yàn)證確認(rèn)符合產(chǎn)品規(guī)范的設(shè)計(jì),,以及可用來解決后續(xù)問題的模型,作為市場支持的一部分,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。