《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 高效率 LED 驅(qū)動電源設(shè)計
高效率 LED 驅(qū)動電源設(shè)計
摘要: 盡管LED應(yīng)用日益流行,仍有許多電源管理問題需要解決,。例如,,LED在注重可靠性與安全性的汽車市場的應(yīng)用雖已大幅成長,但汽車電路系統(tǒng)的電源環(huán)境其實相當(dāng)嚴(yán)苛,,所以保護(hù)電路設(shè)計必須能夠承受60V以上的電壓突降。
Abstract:
Key words :

隨著LED生產(chǎn)成本下降,,越來越多應(yīng)用開始采用這類組件,,包括手持裝置、汽車電子和建筑照明等,。LED擁有高可靠性,、良好效率和超快響應(yīng)速度,所以很適合作為照明光源,。雖然白熾燈泡的成本很低,,更換費用卻可能很昂貴。街燈就是很好的例子,,更換一個故障燈泡往往需要出動多位人員和一輛卡車,。也因為如此,盡管LED和白熾燈泡的效率大致相等,,許多街燈卻采用可靠性更高且更省電的LED,。


白熾燈雖能發(fā)出連續(xù)光譜,卻常用于交通號志等只需綠光,、紅光和黃光的場合,。這類應(yīng)用須在白熾燈外加裝一個特定顏色的濾片,但它會造成六成的光能浪費,。LED則能產(chǎn)生特定顏色的光,,而且只要接通電源即可立即發(fā)亮,不像白熾燈需要200ms的反應(yīng)時間,,因此汽車產(chǎn)業(yè)早就將LED用于車燈,。另外,DLP視訊應(yīng)用也以LED作為光源,,利用高速開關(guān)的LED取代原有機(jī)械組件,。

LED的I-V特性
圖1是典型InGaAlP LED的正向電壓特性。LED電路模型可表示為一個電壓源串聯(lián)一個電阻,,這個簡單模型與實際測量結(jié)果很吻合,。電壓源為負(fù)溫度系數(shù),,因此正向電壓會隨著接面溫度升高而下降。InGaAlP LED(黃色與琥珀紅)的溫度系數(shù)在-3.0~-5.2mV/K之間,,InGaN LED(藍(lán),、綠和白色)則介于-3.6~-5.2mV/K之間。負(fù)溫度系數(shù)是造成LED很難并聯(lián)的原因之一,,因為越熱的組件會汲取越多的電流,,越多的電流又會讓它的溫度進(jìn)一步升高,最后就變成熱失控,。

圖1 以電壓源和串聯(lián)電阻作為LED電路模型后得到的I-V特性曲線


圖2是輸出光強(qiáng)度(光通量)與操作電流的關(guān)系,,可以看出輸出光強(qiáng)度與二極管電流的關(guān)系很密切,只要改變正向電流就能調(diào)整LED的亮度,。另外,,這條曲線在電流較小時很像是一條直線,但其斜率在電流升高時會變得較小,。這表示當(dāng)電流較小時,,只要二極管電流加倍就會讓輸出光強(qiáng)度加倍。電流較大時則非如此,,此時電流加倍只會讓輸出光強(qiáng)度提高八成,。這項特性對LED很重要,因為它是由交換式電源所驅(qū)動,,所以可能會遇到很大的紋波電流,。其實電源供應(yīng)的成本在某種程度上就是由所允許的電流決定:紋波電流越大,,電源供應(yīng)的成本就越低,,只不過LED的輸出光強(qiáng)度也會受到影響。

圖2  LED效率在電流超過1A后開始下降


圖3是把三角紋波電流加到直流輸出電流后,,輸出光強(qiáng)度減少的情形,。由于紋波電流的頻率在多數(shù)情形下都遠(yuǎn)超過人眼所能分辨的80Hz,再加上人眼對光強(qiáng)度的反應(yīng)又呈現(xiàn)指數(shù)關(guān)系,,只要光強(qiáng)度減少不超過20%就不會被發(fā)現(xiàn),,因此就算LED電流的紋波很大,光強(qiáng)度也不會明顯減弱,。

圖3 紋波電流造成LED輸出光強(qiáng)度略為下降


紋波電流還會增加LED耗電量,,造成接面溫度上升,并對LED的使用壽命產(chǎn)生很大影響,。圖4顯示LED輸出光強(qiáng)度與時間及接面溫度的關(guān)系,。我們設(shè)定80%的輸出光強(qiáng)度為LED的使用壽命,則從圖4中可看出,,當(dāng)溫度從74℃降至63℃時,,LED使用壽命會從10 000小時增加為25 000小時,。

圖4 接面溫度升高會縮短LED的使用壽命


圖5是紋波電流造成LED功耗增加的情形。由于紋波頻率比LED的熱時間常數(shù)高,,因此就算紋波電流很大 (以及峰值功耗很大)也不會影響峰值接面溫度——這個溫度主要是由平均功耗決定,。LED的大部份電壓降就像是一個電壓源,所以電流波形不會對功耗造成影響,。然而電壓降中仍會有某些電阻分量,,這部份的功耗等于電阻值乘以均方根電流的平方。

圖5 紋波電流導(dǎo)致LED耗電增加


從圖5還能發(fā)現(xiàn)就算紋波電流很高,,也不會對LED功耗造成太大影響,。舉例來說,當(dāng)紋波電流達(dá)到輸出電流的一半時,,耗電量只會增加不到5%,。但若紋波電流遠(yuǎn)遠(yuǎn)超出這個水平,設(shè)計人員就必須減少電源提供的直流電流,,避免接面溫度升高而影響組件壽命,。一個簡單的經(jīng)驗法則是:接面溫度每降低10℃,半導(dǎo)體組件壽命就會延長一倍,。另外,,多數(shù)設(shè)計由于受到電感的限制,都會盡量降低紋波電流,,因為大部分電感只能應(yīng)付20%以下的Ipk/Iout紋波電流比,。

典型應(yīng)用
LED電流常由安定電阻或線性穩(wěn)壓器控制,但本文主要討論交換式穩(wěn)壓器,。LED驅(qū)動架構(gòu)基本上可分為降壓,、升壓和升降壓等三種類型,實際架構(gòu)則應(yīng)由輸入電壓與輸出電壓的關(guān)系決定,。


如果輸出電壓永遠(yuǎn)低于輸入電壓,,則可采用圖6所示的降壓穩(wěn)壓器。在此電路里,,輸出濾波電感L1的平均電壓是由功率開關(guān)的負(fù)載周期所控制,。TPS5430內(nèi)含的FET開關(guān)導(dǎo)通時會將輸入電壓連接到電感L1并產(chǎn)生電流,逆向電壓保護(hù)二極管D2則會在開關(guān)截止時提供另一條電流路徑,。L1電感可以穩(wěn)定LED電流,,因為電路會透過電阻監(jiān)控LED電流,然后比較電阻電壓與控制組件內(nèi)部的參考電壓以判斷電流大?。喝绻娏魈?,就增加功率開關(guān)的負(fù)載周期來提高L1電感的平均電壓,以便讓LED電流升高。這個電路的工作效率很高,,因為功率開關(guān),、逆向電壓保護(hù)二極管和電流感測電阻的電壓降都很小。

圖6 降壓式LED驅(qū)動器會將輸入電壓轉(zhuǎn)換為較低電壓


如果輸出電壓永遠(yuǎn)大于輸入電壓,,圖7所示的升壓轉(zhuǎn)換架構(gòu)就是最佳選擇,。這個設(shè)計除了控制電路外,同樣會使用內(nèi)含功率開關(guān)的組件U1,。功率開關(guān)導(dǎo)通時,,電流會通過電感到地。開關(guān)截止時,,U1接腳1的電壓會上升直到D1導(dǎo)通,,電感也會經(jīng)由輸出電容C3和多個串聯(lián)的LED開始放電。多數(shù)應(yīng)用會利用C3穩(wěn)定LED電流,,若沒有該電容,,LED電流會變成在零與電感電流之間交替切換的不連續(xù)電流,不僅會降低LED的亮度,,還會產(chǎn)生更多熱量而縮短LED壽命,。此電路也和前面一樣利用電阻感測LED電流,再根據(jù)結(jié)果調(diào)整負(fù)載周期,。注意,,此架構(gòu)很大的缺點是沒有提供短路保護(hù),輸出端短路會造成龐大電流通過電感與二極管,,將導(dǎo)致電路故障或輸入電壓大幅下降,。

圖7 整合式升壓LED驅(qū)動器將輸入電壓轉(zhuǎn)換為高電壓


如果輸入電壓的變動范圍很大,有時高于輸出電壓,,有時又低于輸出電壓,,那么單純的降壓或升壓架構(gòu)就不適用。除此之外,,升壓應(yīng)用還可能需要短路保護(hù)功能,。在此狀況下,設(shè)計人員應(yīng)采用圖8所示的升降壓架構(gòu),。這個電路與升壓轉(zhuǎn)換架構(gòu)很類似,會在功率開關(guān)導(dǎo)通時建立電感電流,,等到功率開關(guān)停止導(dǎo)通,,電感電流就會通過輸出電容和LED。這種設(shè)計與升壓轉(zhuǎn)換架構(gòu)的區(qū)別在于輸出電壓不是正值,,而是負(fù)電壓,。此架構(gòu)還能在輸出短路時將開關(guān)Q1切斷,所以可以避免升壓架構(gòu)發(fā)生的短路問題。此電路的另一特點是盡管輸出為負(fù)電壓,,感測電路卻不需執(zhí)行電壓位準(zhǔn)轉(zhuǎn)換——因為控制組件的地線連接到負(fù)輸出端,,并直接測量感測電阻R100兩端的電壓。圖8中雖然只有1個LED,,實際應(yīng)用卻可串聯(lián)多顆,。另外要注意的是,輸入電壓與輸出電壓的總和不能超過控制組件的最大電壓額定值,。

圖8 升降壓架構(gòu)支持很大的輸入電壓范圍

控制回路設(shè)計
LED電源供應(yīng)的電流回路設(shè)計要比傳統(tǒng)電源供應(yīng)的電壓回路簡單,。電流回路的復(fù)雜性是由輸出濾波架構(gòu)決定的。圖9就是三種常見架構(gòu),,分別是單純的電感濾波器(A),、典型的電源供應(yīng)濾波器(B)和改良型濾波器設(shè)計(C)。

圖9 三種不同的輸出濾波架構(gòu)

為每個功率級電路建立簡單的P-Spice模型,,以說明其控制特性的個別差異,。其中降壓轉(zhuǎn)換功率FET與二極管的開關(guān)動作由一個10倍增益的壓控電壓源代表,LED由一個3Ω電阻串聯(lián)6V電壓源代表,,LED與接地之間還有一個1Ω的電流感測電阻,。模擬結(jié)果如圖10所示。

圖10  三種濾波器架構(gòu)的增益與相位圖


電路A是相當(dāng)穩(wěn)定的一階系統(tǒng)響應(yīng),,其中,,直流增益是由壓控電壓源、LED阻抗所構(gòu)成的分壓器以及電流感測電阻所決定,,系統(tǒng)極點則由輸出電感與電路阻抗決定,。補(bǔ)償電路設(shè)計也很簡單,只要使用乙類放大器即可,。


電路B由于包含輸出電容,,所以會有二階響應(yīng)。增加輸出電容是因為某些應(yīng)用在電磁干擾或散熱因素的考慮下,,不能容忍LED出現(xiàn)太大的紋波電流,,因此需要輸出電容來消除紋波電流。這個電路的直流增益與前面的電路相同,,但它會在輸出電感和電容所決定的頻率點上產(chǎn)生一對復(fù)數(shù)極點,。由于濾波電路的總相位移為180°,因此補(bǔ)償電路設(shè)計必須謹(jǐn)慎以免系統(tǒng)不穩(wěn)定,。補(bǔ)償電路設(shè)計與采用丙類放大器的傳統(tǒng)電壓模式電源供應(yīng)很類似,,但比電路A多出兩顆零件和輸出電容。


電路C則會重新安排輸出電容的位置,,使電路補(bǔ)償更容易,。LED兩端的紋波電壓與電路B很類似,,只不過電感紋波電流會通過電流感測電阻R105,這在計算功耗時必須考慮,。此電路的補(bǔ)償設(shè)計幾乎和電路A同樣簡單,,直流增益也與前面兩種電路相同。電路共有1個零點和2個極點,,零點由電容和LED串聯(lián)電阻產(chǎn)生,。第一個極點由輸出電容和電流感測電阻決定,第二個極點由電流感測電阻和輸出電感決定,。當(dāng)頻率很高時,,此電路的響應(yīng)與電路A相同。

調(diào)光
許多應(yīng)用都需要LED調(diào)光功能,,像是顯示器亮度控制和建筑照明調(diào)整,。LED調(diào)光方式有兩種,一種是減少LED電流,,另一種是讓LED快速導(dǎo)通和截止,。由于輸出光強(qiáng)度不全與電流成正比,LED光譜在電流低于額定值時還常會移動,,所以減少LED電流不是很有效率的做法,。另外,人類的亮度感受還與光強(qiáng)度成指數(shù)關(guān)系,,需大幅改變電流才能達(dá)到調(diào)光效果,,這對電路設(shè)計造成很大影響,例如,,電路容差(circuit tolerance)就能讓3%的滿負(fù)載電流誤差在10%負(fù)載時增為30%以上,。


電流波形脈沖寬度調(diào)變(PWM)雖然提供更精確的亮度調(diào)整,但響應(yīng)速度要特別注意,,如照明和顯示器應(yīng)用就必須讓PWM速度超過100Hz,,否則看起來會有閃爍的感覺。假設(shè)PWM頻率為100Hz,,那么10%的脈沖寬度就已進(jìn)入毫秒范圍,,是故電源供應(yīng)必須提供10kHz以上的帶寬。圖9中的A和C簡單回路都能輕易達(dá)到此要求,。圖11是包含PWM調(diào)光功能的降壓轉(zhuǎn)換功率級電路,,會不停接通和切斷LED與電路的聯(lián)機(jī)。這種架構(gòu)讓控制回路永遠(yuǎn)處于工作狀態(tài),,故能提供非??焖俚乃矔r響應(yīng) (見圖12)。

圖11 利用Q1對LED電流進(jìn)行脈沖寬度調(diào)變

圖12 PWM技術(shù)提供1μs以內(nèi)的LED切換速度

結(jié)語
盡管LED應(yīng)用日益流行,,仍有許多電源管理問題需要解決。例如,LED在注重可靠性與安全性的汽車市場的應(yīng)用雖已大幅成長,,但汽車電路系統(tǒng)的電源環(huán)境其實相當(dāng)嚴(yán)苛,,所以保護(hù)電路設(shè)計必須能夠承受60V以上的電壓突降。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。