并行光互連技術(shù)
伴隨著數(shù)字化的進程,,數(shù)據(jù)的處理、存儲和傳輸?shù)玫搅孙w速的發(fā)展,。高帶寬的需求使得短距互聯(lián)成了系統(tǒng)發(fā)展的瓶頸。受損耗和串?dāng)_等因素的影響,,基于銅線的電互聯(lián)的高帶寬情況下的傳輸距離受到了限制,,成本也隨之上升。而且過多的電纜也會增加系統(tǒng)的重量和布線的復(fù)雜度,。與電互連相比,,基于多模光纖的光互連具有高帶寬、低損耗,、無串?dāng)_和匹配及電磁兼容等問題,,而開始廣泛地應(yīng)用于機柜間、框架間和板間的高速互連,。
光互聯(lián)技術(shù)及其應(yīng)用" src="http://files.chinaaet.com/images/20110621/ab41a3b3-a184-41f2-bece-e233553e6282.jpg" />
圖1是基于誤碼率小于10-12吉比特以太網(wǎng)聯(lián)接模型的傳輸距離與帶寬的關(guān)系曲線,,光纖是500MHz.km,50/125vm多模光纖,??梢钥闯觯?.5Gbps速率下傳輸距離可以達到300米,;而在3.75Gbps速率下可以達到50m,。并行光互連通過多根光線并行傳輸,可以在高比特率的速率下實現(xiàn)較遠距離的傳輸,,這就是為可采用并行光互連的一個原因,。
并行光模塊和帶狀光纜
并行光互連通過并行光模塊和帶狀光纜來實現(xiàn)。并行光模塊是基于VCSEL陣列和PIN陣列,,波長850nm,,適合多模光纖50/125vm和62.5/125vm。封裝上其電接口采用標(biāo)準(zhǔn)的MegArray連接器,,光接口采用標(biāo)準(zhǔn)的MTP/MPO帶狀光纜,。目前比較通用的并行光模塊有4路收發(fā)一體和12路收發(fā)分離模塊。
圖2是收發(fā)一體模塊的示意圖,。它有4路發(fā)射和4路接收通道,,每一通道的速率可達3.125Gbps,,總互連容量可達12.5Gbps。
圖3和圖4分別是12路發(fā)射和接收模塊的示意圖,。每個通道可提供2.725Gbps的傳輸速率,,總互連容量可達32.6Gbps。
無論4路收發(fā)一體模塊,,還是12路收發(fā)分離模塊,,模塊間的互連使用的都是12通道的MTP/MPO帶狀光纜。
并行光模塊的應(yīng)用
1. 高速路由器的光背板
高速路由器采用光背板,,極大地簡化了布線的復(fù)雜度,,非常適合路由器容量的無限擴展。
2. InfiniBand
InfiniBand的應(yīng)用如圖6,。
3. 超級計算機中的刀片服務(wù)器
由于超級計算機是由多個CPU并行計算,,數(shù)據(jù)處理和交換容量大,光互連是其內(nèi)部連接的理想選擇,。在超級計算機系統(tǒng)中,,一般采用4路收發(fā)一體并行光模塊。
4. 光纖通道
2X光纖通道一般采用2.125Gbps SFP模塊,,其互連示意圖如圖7:
并行模塊和SFP模塊間通過fan-out(圖9)連接. 采用并行模塊代替SFP模塊,,可以節(jié)省板空間和功耗,從而降低成本,。
展望
光互連的發(fā)展將在未來的五年內(nèi)由機架間向板間互連普及,,十年內(nèi)實現(xiàn)板內(nèi),也就是芯片間的互連,。并行光模塊在年內(nèi)就可實現(xiàn)每通道5Gbps的速率傳輸,,同時由于用量的大幅提高,成本也會接近甚至低于電互連,。