《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 光伏并網(wǎng)發(fā)電模擬裝置研制[圖]
光伏并網(wǎng)發(fā)電模擬裝置研制[圖]
摘要: 中研制了一套模擬并網(wǎng)發(fā)電系統(tǒng),實現(xiàn)了頻率跟蹤,、最大功率跟蹤,、相位跟蹤,、輸入欠壓保護、輸出過流保護,、反孤島效應等功能,;采用Atmega16高速單片機,實現(xiàn)了內(nèi)部集成定時,、計數(shù)器功能,;利用定時器T/C2的快速PWM功能,實現(xiàn)SPWM信號的產(chǎn)生,;采用T/C1的輸入捕獲功能,,實現(xiàn)了頻率相位監(jiān)測和跟蹤以及對失真度、輸入電壓,、輸出電流等物理量的檢測與控制,。
Abstract:
Key words :
隨著國際工業(yè)化的進程,全球未來能源消耗預計以3%的速度增長,,常規(guī)能源面臨日益枯竭的窘境,。人們開始了可再生能源與新能源技術的開發(fā),最具發(fā)展前景的當屬風力發(fā)電和太陽能發(fā)電,,即光伏并網(wǎng)發(fā)電,。

1 整體方案設計

設計采用Atmega16單片機為主體控制電路,工作過程為:與基準信號同頻率,、同相位正弦波經(jīng)過SPWM調(diào)制后,,輸出正弦波脈寬調(diào)制信號,經(jīng)驅(qū)動電胳放大,,驅(qū)動H橋功率管工作,,經(jīng)過濾波器和工頻變壓器產(chǎn)生于基準信號通頻率、同相位的正弦波電流,。其中,,過流、欠壓保護由硬件實現(xiàn),同步信號采集,、頻率的采集、控制信號的輸出等功能,,均由Atmega16完成,。系統(tǒng)總體設計框圖如圖1所示。

光伏并網(wǎng)發(fā)電模擬裝置研制

2 硬件電路設計

分為DC/AC驅(qū)動電路,、DC/AC電路和濾波電路3部分和平滑電容C1,,電路原理如圖2所示。

光伏并網(wǎng)發(fā)電模擬裝置研制

2.1 DC—AC驅(qū)動電路

是由R1,、R2,、R3、R4,、R5,、R6、Q3,、Q4,、P3和P4組成,其中P3和P4是控制信號輸入端,,R3和R4為限流電阻,。集電極的電流直接影響波形上升沿的陡峭度,集電極電流越大輸出的波形越陡峭,。因為R2和R1與集電極pn節(jié)的寄生電容形成了一個RC充放電的時間常數(shù),,集電極pn結的寄生電容無法改變,只有通過改變R1和R2的值來改變時間常數(shù),,所以R1和R2值越小,,Q3和Q4的集電極電流就越大;RC的充電時間常數(shù)越小,,波形的上升沿越陡峭,,而增加集電極電流,會增加系統(tǒng)的功耗,,權衡利弊選擇一個合適的值,。其次,射級pn結的寄生電容也會影響Q3和Q4的關斷時間和波形上升沿的陡峭度,。所以在驅(qū)動電路中各加了一個放電回路,,即拉地電阻R5和R6,R5和R6的引入,,加快了Q3和Q4的關閉速度,,這樣就使集電極的波形更陡峭。同樣在保證基極射極pn不損壞的條件下,基極的電流也是越大越好,,但也會帶來損耗問題,,權衡利弊選擇一個合適的值。關于兩個電阻的取值,,這里假設三極管的放大倍數(shù)為β,,基極電流Ib,集電極電流Ic,,流過R5的電流為I5,,流過R3的電流為I3,R3的壓降為V3,,驅(qū)動信號為V,,R5的壓降為V5,有

光伏并網(wǎng)發(fā)電模擬裝置研制

實際中R3和R5應該比計算值小,,這樣是為了讓三極管工作在飽和狀態(tài),,提高系統(tǒng)穩(wěn)定性。

2.2 DC-AC電路

是由兩只p溝道MOSFET,。Q1,、Q2和兩只n溝道MOSFET Q5、Q6組成,。在這里沒有采用4只n溝道MOSFET,,原因是驅(qū)動電路復雜,如果采用上面的驅(qū)動電路接近電源的兩個導體管不能完全導通,,發(fā)熱量為接近地一側導體管4倍以上,,功耗增加,所以采用對管逆變即減小了功耗,,而且驅(qū)動電路簡單,。通過控制4個導體管的開關速度再通過低通濾波器即可實現(xiàn)DC/AC功能。

2.3 濾波電路

兩個肖特基整流二極管1N5822為續(xù)流二極管,,這里為防止產(chǎn)生負電壓,,C2、C3,、C4,、C5、L1,、L2組成低通濾波器,,其中C5、C6為瓷片電容,,C2,、C3用電解電容,,充放電電流可以流進地,L1,、L2為帶鐵芯的電感,,帶鐵芯的電感對高頻的抑制比空心電感更好,電感值更高,。關于參數(shù)的選取和截止頻率的計算如下

光伏并網(wǎng)發(fā)電模擬裝置研制

3 采樣電路

3.1 電流采樣電路的設計

由于終端負載一定,,所以電流采樣實際等同于一個峰值檢測的過程,此電路實際是一個峰值檢測電路,,P3為信號的2個輸入端,調(diào)整R10,,R11和R17,、R18取值來實現(xiàn)峰值測功能,電路中的阻值并不準確,,需要實際中根據(jù)信號的幅值來調(diào)整R10,、R11和R17、R18阻值和比值,。R14,、R15、R19,、R20的電流為模擬比較器內(nèi)部偏置電流的10倍以上,,電阻的阻值盡可能大,這樣既減小了功耗也保證了系統(tǒng)的穩(wěn)定性,。Y3采用模擬比較器LM393,,LM393內(nèi)部為開集電極輸出,應用的時候輸出端要接一個上拉電阻,,電路如圖3所示,。

光伏并網(wǎng)發(fā)電模擬裝置研制

3.2 MPPT采樣電路

在光伏系統(tǒng)中,通常要求太陽能電池的輸出功率始終最大,,系統(tǒng)要能跟蹤太陽電池輸出的最大功率點,。如果負載不能工作在電池提供的最大功率點,就不能充分利用在當前條件下電池所能提供的最大功率,。因此,,必須在太陽能電池和負載之間加入阻抗變換器,使得變換后的工作點正好和太陽能電池的最大功率點重合,,使太陽能電池以最大功率輸出,,這就是太陽能電池的最大功率跟蹤。即最大功率跟蹤MPPT,,是本套光伏并網(wǎng)發(fā)電模擬裝置研究的一個重要方向,。由于光伏電池的最大功率輸出點是隨光強,、負載和溫度變化的。為充分利用太陽能,,系統(tǒng)必須實現(xiàn)最大功率點的跟蹤,。本套光伏并網(wǎng)發(fā)電模擬采用恒定電壓控制方法,其優(yōu)點是簡單易行,,且可以跟蹤最大功率點,。電路的工作原理:本模塊電路的核心也是模擬比較器LM393,TL431提供7.5V的基準電壓,,在這里基準電壓取值建議≥7.5V,,取值可以比7.5V稍大,以提高系統(tǒng)穩(wěn)定性,,應保證流過R3,、R9的電流為模擬比較器LM393偏置電流的10倍以上,R3,、R9的取值盡可能大,。R1、R2并聯(lián)是為了調(diào)試方便,,現(xiàn)實中很難找到阻值很合適的電阻,,滑動變阻器昂貴,所以用兩個電阻并聯(lián)調(diào)試效果比較理想,。假設R為R1,、R2并聯(lián)值,流過R的電流為I,,則有

光伏并網(wǎng)發(fā)電模擬裝置研制

式(9)中的,,可以認為是TL431的灌電流的最小值,流過R6的電流和模擬比較器LM393的偏置電流忽略不計,。R6和R13阻值選取,,應參考TL431內(nèi)部1腳的偏置電流,流過R6和R13的電流應該10倍于TL431內(nèi)部1腳的偏置電流,,在保證系統(tǒng)穩(wěn)定的前提下盡量減小功耗,。

輸出用了光電耦合器U4把控制電路和主電路隔離,防止主電路干擾控制電路,,R4和R5的取值太大影響穩(wěn)定性,,取值太小則使流過R4、R5的電流大功耗增加甚至損壞器件,。

模擬比較器LM393的正相輸入端3腳位固定電壓7.5V,,正常狀態(tài)下PD4采集到的為高電平,當2腳的電壓高于7.5V時輸出端1腳輸出低電平,,光耦導通,,PD4采集到的為低電平開始處理SPWM信號調(diào)整輸出阻抗來實現(xiàn)恒電壓跟蹤,,最終實現(xiàn)最大功率點跟蹤。電路如圖4所示,。

光伏并網(wǎng)發(fā)電模擬裝置研制

3.3 欠壓采樣電路設計

如圖5與圖4電路相似,,模擬比較器的反相輸入端為基準電壓7.5V,而R22換成電位器,,目的是為了便于調(diào)整使本裝置適用于不同欠壓值控制,。輸出采用光電耦合器U4把控制電路和主電路隔離,防止主電路干擾控制電路,,R22,、R24的取值太大影響穩(wěn)定性,取值太小則使流過R22,、R24的電流大功耗增加甚至損壞器件,,R21、R23的取值大小參見4N25的輸入輸出特性曲線,。

模擬比較器LM393的反相輸入端6腳位固定電壓7.5V,正常狀態(tài)下欠壓采樣輸出為高電平,,當5腳電壓<7.5V時,,輸出端7腳輸出為低電平,光耦導通,,欠壓輸出端采集到的低電平欠壓保護電路開始工作,,切斷主電路供電,實現(xiàn)欠壓保護,。

4 欠壓過流保護電路設計

電路如圖6所示,,當系統(tǒng)正常工作時,此過流保護的輸入端過流信號和欠壓即CD4011的1腳和2腳,,檢測到的信號都是高電平,,C04011的3腳輸出低電平,經(jīng)過U10B和U10C兩級反相最終CD4011的10腳輸出低電平,,三極管2N3904截止,,繼電器常閉端處于導通狀態(tài),系統(tǒng)處于正常工作狀態(tài),。當輸出流過負載的電流過大或者輸入電壓不足時低電平觸發(fā)CD4011的1腳2腳,,這時候3腳輸出高電平,電容C10充電經(jīng)過U10B和U10C兩級反相后10腳輸出高電平,,三極管2N3904導通,,繼電器的常閉端斷開,主電路停止供電,,處于保護狀態(tài),。由于主電路電源被切斷U10A的輸入端檢測到高電平,,3腳輸出低電平,由于CD4011的高輸入阻抗和開關二極管D6單向?qū)ㄗ饔?,C10的電荷只能通過R27釋放,,當U10B的輸入端電位低于門限電壓,經(jīng)過U10B和U10C兩級反相后,,三極管2N3904關閉,,主電路開始供電。這樣實現(xiàn)了系統(tǒng)過流,、欠壓故障排除后,,裝置自動恢復為正常狀態(tài)。

光伏并網(wǎng)發(fā)電模擬裝置研制

此部分電路的設計采用雙輸入四與非門CD4011做反相器,、開關二極管D6,、電阻R27、電解電容C10,、三極管2N3904和繼電器,。R26的選取由繼電器的驅(qū)動電流和2N3904的放大倍數(shù)β來決定,過小則增加功耗,,過大則不能驅(qū)動繼電器,。R27和C10的放電時間就是系統(tǒng)過流欠壓保護后檢測的間隔時間。時間T=2×R27×C10,。

5 結束語

光伏并網(wǎng)發(fā)電是一個集計算機技術,、電力電子技術和材料科學等綜合性學科的技術。光伏并網(wǎng)發(fā)電有廣闊的發(fā)展前景,,而太陽能利用將為環(huán)保事業(yè),、能源結構的調(diào)整,減少對傳統(tǒng)能源的依賴做出巨大貢獻,。隨著風電機組制造成本的不斷降低,,化石燃料的逐步減少及其開采成本的增加,將使風電逐步增強市場競爭力,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權禁止轉(zhuǎn)載。