本文設(shè)計了一種應(yīng)用于負(fù)電源的電平位移電路,。實現(xiàn)從0~8V低壓邏輯輸入到8~-100V高壓驅(qū)動輸出的轉(zhuǎn)換,。分析了該電路的結(jié)構(gòu)和工作原理。基于此電路結(jié)構(gòu)設(shè)計了滿足應(yīng)用要求的高壓薄膜SOI LDMOS器件,。分析了器件的工作狀態(tài)以及耐壓機(jī)理,,并利用工藝器件聯(lián)合仿真對器件的電學(xué)特性進(jìn)行了優(yōu)化設(shè)計。
在柵驅(qū)動電路中需要電平位移電路來實現(xiàn)從低壓控制輸入到高壓驅(qū)動輸出的電平轉(zhuǎn)換,。而在一些領(lǐng)域如SOC中的待機(jī)模式激活,、ESD保護(hù)等需要能工作在負(fù)電源的電平位移電路。
SOI(Silicon-On-Insulator)技術(shù)以其高速,、低功耗,、高集成度、極小的寄生效應(yīng)以及良好的隔離等特點(diǎn),,在集成電路設(shè)計應(yīng)用中倍受青睞,。
本文基于SOI高壓集成技術(shù)設(shè)計了電源電壓為8~-100V的電平位移電路,并對電路中的核心LDMOS器件進(jìn)行了設(shè)計和模擬仿真優(yōu)化,。
1 電路結(jié)構(gòu)
傳統(tǒng)正電源應(yīng)用的電平位移電路結(jié)構(gòu)如圖1(a)所示,。L1、L2,、L3是由邏輯電路部分產(chǎn)生的低壓時序控制信號,,N1、N2,、N3為高壓nLDMOS器件,P1,、P2,、P3為高壓平pLDMOS器件。由P1,,P2和N1,、N2構(gòu)成的電平位移單元將L1、L2的低壓邏輯信號轉(zhuǎn)變?yōu)榭梢钥刂芇3管的高壓電平,,與L3一起控制由P3和N3組成的反向輸出級,,從而實現(xiàn)從低壓邏輯信號到高壓驅(qū)動輸出的轉(zhuǎn)換。
在正電源電平位移電路中,,由于nLDMOS的源極為低壓,,所以可以通過低壓邏輯部分來控制其開關(guān)狀態(tài),而源極為高壓的pLDMOS則通過電平位移來控制,。當(dāng)高壓驅(qū)動電壓為8~-00V,,低壓邏輯部分工作電壓為0~8V時,電平位移轉(zhuǎn)換部分的電壓分布本身沒有改變,,但是在和低壓控制端接合時,,與傳統(tǒng)的正電源相比電平發(fā)生了改變,就需要重新設(shè)計低壓邏輯的控制方式,。此時,,nLDMOS的源極為-100V電壓,,顯然不能通過低壓邏輯控制部分的0~8V電壓來實現(xiàn)控制,而pLDMOS的源極為8V電源,。因此采用了低壓邏輯輸出直接控制pLDMOS,,而nLDMOS則通過電平位移來控制的方法,如圖1(b)所示,。
2 器件設(shè)計及優(yōu)化
由于負(fù)電源供電的電平位移電路結(jié)構(gòu)的改變,,應(yīng)用于正電源的常規(guī)nLDMOS和pLDMOS不能滿足該電路結(jié)構(gòu)要求。在正電源供電的電平位移電路中,,由于pLDMOS的源端接高壓電源,,其柵源需要承受高壓,所以pLDMOS采用了厚柵氧的結(jié)構(gòu),,如圖2(a)所示,。在使用負(fù)電源的電平位移電路結(jié)構(gòu)中(圖1(b)),pLDMOS的源端為邏輯高壓8V,,柵端由低壓邏輯0~8V電壓控制,,因此柵源不再承受高壓。但是nLDMOS的源端為負(fù)電源的最低電位,,其柵源需要承受高壓,,因此高壓nLDMOS需要采用厚柵氧結(jié)構(gòu),如圖2(b)所示,。
電源的改變不僅僅改變了電路的結(jié)構(gòu),,nLDMOS的厚柵氧,同時器件的耐壓機(jī)理也發(fā)生了改變,??紤]到低壓管的背柵效應(yīng),SOI材料的襯底只能接地,,因此源漏電平的改變將引起nLDMOS和pLDMOS耐壓機(jī)理的改變,。圖3是利用工藝(Tsuprem4)、器件(Medici)聯(lián)合仿真得到的正電源和負(fù)電源電平位移電路中高壓nLDMOS和pLDMOS關(guān)態(tài)擊穿時等勢線分布對比圖,。對于nLDMOS,,常規(guī)正電源應(yīng)用的襯底電位對于漂移區(qū)來說是輔助耗盡作用,這就是常規(guī)SOI中的RESURF原理,。但是對于負(fù)電源的nLDMOS來說,,襯底不再起輔助耗盡SOI層漂移區(qū)的作用(圖3(b))。對于pLDMOS來說,,情況剛好相反,。所以針對負(fù)電源應(yīng)用,兩種器件都要進(jìn)行相應(yīng)的優(yōu)化處理。
利用工藝器件聯(lián)合仿真,,在傳統(tǒng)的正電源應(yīng)用的LDMOS基礎(chǔ)上對器件的結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化設(shè)計,。圖4(a)為pLDMOS在漂移區(qū)注入劑量Nd=7 e12cm-2時關(guān)態(tài)耐壓、開態(tài)耐壓與漂移區(qū)長度Ld(μm)的關(guān)系,,以及在漂移區(qū)長度Ld=9μm情況下關(guān)態(tài)耐壓,、開態(tài)耐壓與漂移區(qū)注入劑量Nd(cm-2)的關(guān)系。其他參數(shù)為:n型體區(qū)注入劑量5e12 cm-2,,Nsink注入劑量3e15 cm-2,,P-buffer注入劑量1.5e13 cm-2,溝道長度3μm,,柵極場板3μm,。從仿真結(jié)果可以看出:pLDMOS的關(guān)態(tài)耐壓隨漂移區(qū)的增加而增大,隨漂移區(qū)的注入劑量的增大先增大后減小;開態(tài)耐壓隨著漂移區(qū)注入劑量的增大而降低,,但是在一定范圍內(nèi)漂移區(qū)長度對其影響較小,。總體上,,pLDMOS的關(guān)態(tài)耐壓,、開態(tài)耐壓都在160V以上,完全能夠滿足8~-100V工作電壓(108V耐壓)的要求,。
圖4 (b)為nLDMOS在漂移區(qū)注入劑量Nd=4e11cm-2時關(guān)態(tài)耐壓,、開態(tài)耐壓與漂移區(qū)長度Ld(μm)的關(guān)系,以及在漂移區(qū)長度Ld=15μm情況下關(guān)態(tài)耐壓,、開態(tài)耐壓與漂移區(qū)注入劑量Nd(cm-2)的關(guān)系,。其他參數(shù)為:p型體區(qū)注入劑量5e13 cm-2,Psink注入劑量3e15 cm-2,,N-buffer注入劑量1e13cm-2,溝道長度3μm,,柵極場板3.5μm,。相對于pLDMOS,漂移區(qū)注入劑量和漂移區(qū)長度對于開態(tài)耐壓,、關(guān)態(tài)耐壓的影響不大,。同時關(guān)態(tài)耐壓都能維持在180V以上,但是開態(tài)耐壓卻只有90~120V,,不能滿足8~100V工作電壓(108V耐壓)的要求,。nLDMOS開態(tài)耐壓問題成為電路、器件設(shè)計的關(guān)鍵,。
針對nLDMOS器件開態(tài)耐壓低的問題,,有針對性地仿真了溝道長度、多晶硅柵場板長度及體區(qū)濃度對開態(tài)耐壓的影響。圖5(a)為nLDMOS的關(guān)態(tài)耐壓,、開態(tài)耐壓及閾值與溝道長度(Lch)的關(guān)系,。可以看出溝道長度對器件的開態(tài)耐壓和關(guān)態(tài)耐壓影響很小,。閾值隨著溝道長度的增加而增加,,這是由于采用橫向雙擴(kuò)散形成溝道,所以隨著溝道長度增加,,p型體區(qū)的濃度越來越大,,閾值也就越來越大。圖5(b)為nLDMOS的關(guān)態(tài)耐壓,、開態(tài)耐壓及閾值與多晶硅柵極場板長度(LPgate)的關(guān)系,。在柵極場板較長時,其對閾值和關(guān)態(tài)耐壓影響很小,,當(dāng)柵極場板縮短到多晶硅柵不能覆蓋溝道時,,器件的開態(tài)耐壓大幅增加。這時閾值也迅速增加,。雖然多晶硅柵不能完全覆蓋溝道,,但是由于開態(tài)時nLDMOS的柵漏電壓差很大,所以仍然能夠在表面形成反型層溝道,。因此,,大幅減短柵極場板能有效提高器件的開態(tài)耐壓,但是同時也帶來了器件不能有效開啟的問題,。圖5(c)為nLDMOS的關(guān)態(tài)耐壓,、開態(tài)耐壓及閾值與體區(qū)注入劑量(Pbody)的關(guān)系??梢钥闯鲈黾芋w區(qū)的注入劑量對器件的耐壓影響很小,。但是隨著注入劑量的增加,體區(qū)濃度增加,,所以閾值就增加,,同時器件的開態(tài)耐壓也隨之增加。當(dāng)體區(qū)注入劑量達(dá)到5e14cm-2時,,閾值增加緩慢,,開態(tài)耐壓卻大幅增加,所以只能通過閾值上的犧牲來改善nLDMOS的開態(tài)擊穿耐壓,。
通過以上分析,,發(fā)現(xiàn)提高nLDMOS的開態(tài)擊穿電壓最有效的方法是縮短柵極場板和提高體區(qū)注入劑量。這二種方法的實質(zhì)提高導(dǎo)通阻抗或降低電流能力,。但是對于普通應(yīng)用的nLDMOS,,電流能力本身就比pLDMOS有優(yōu)勢,。當(dāng)應(yīng)用到負(fù)電源電平位移電路中時,厚柵氧高柵源電壓使得nLDMOS的電流能力更加突出,,但是同時也導(dǎo)致了開態(tài)耐壓的降低,。所以提高nLDMOS開態(tài)擊穿電壓就必須降低其電流能力。如圖6所示,,在nLD-MOS正常工作時,,源端的電壓為-100V,此時飽和電流相差0.05mA/μm,。
在縮短柵極場板到1μm,,提高體區(qū)注入劑量到5e14 cm-2的情況下,在得到nLDMOS的閾值電壓為24V,,關(guān)態(tài)擊穿電壓215V,,開態(tài)擊穿電壓140V,能夠滿足-100V電壓的應(yīng)用要求,。
3 結(jié)束語
基于此電路結(jié)構(gòu)設(shè)計了滿足電路應(yīng)用需求的高壓器件,。并對高壓LDMOS進(jìn)行了優(yōu)化設(shè)計,尤其是高壓nLDMOS的開態(tài)耐壓,。得到高壓nLDMOS的關(guān)態(tài)擊穿電壓215V,,開態(tài)擊穿電壓140V,閾值電壓24V;高壓pLDMOS的關(guān)態(tài)擊穿電壓200V,,開態(tài)擊穿電壓160V,,閾值電壓-1V。
.