0 引言
微晶磁芯具有較高的飽和磁感應(yīng)強(qiáng)度(1.l~1.2T),,高磁導(dǎo)率,低矯頑力,,低損耗及良好的穩(wěn)定性,、耐磨性、耐蝕性,,同時(shí)具有較低的價(jià)格,,在所有的金屬軟磁材料芯中具有最佳的性價(jià)比。用于制作微晶鐵芯的材料被譽(yù)為”綠色材料”,,廣泛應(yīng)用于取代硅鋼,,坡莫合金及鐵氧體,,作為各種形式的高頻(20~100 kHz)開關(guān)電源中的大中小功率的主變壓器,、控制變壓器、波電感,、儲(chǔ)能電感,、電抗器、磁放大器,、飽和電抗器磁芯,、EMC濾波器共模電感和差模電感磁芯、.IDSN微型隔離變壓器磁芯,,也廣泛應(yīng)用于各種類同精度的互感器磁芯,。
1 超微晶磁芯的主要特點(diǎn)
VITROPERM 500F鐵基超微晶磁芯具有以下特點(diǎn):
1)極高的初始磁導(dǎo)率,μ=30 000~80 000,,且磁導(dǎo)率隨磁通密度和溫度的變化非常?。?/p>
2)磁芯損耗極低,,并且在一40~+120℃范圍內(nèi)不隨溫度而變化,;
3)非常高的飽和磁通密度(Bs=1.2T),允許選擇較低的開關(guān)頻率,能降低開關(guān)電源及EMI濾波器的成本,;
4)磁芯采用環(huán)氧樹脂封裝,,機(jī)械強(qiáng)度高,無磁滯伸縮現(xiàn)象,,能承受強(qiáng)振動(dòng),;
5)可取代傳統(tǒng)的鐵氧體磁芯以減小開關(guān)電源的體積.提高可靠件.
超微晶磁芯的型號(hào)很多,所傳輸?shù)墓β士蓮?0 W到11kW,。幾種常用磁性材料的性能比較見表1,。
2 超微晶磁芯在開關(guān)電源中的應(yīng)用
2.1 超微晶磁芯材料在高頻變壓器中的應(yīng)用
目前,高頻變壓器一般選用鐵氧體磁芯,。VITROPERM 5OOF鐵基超微晶磁芯與德國兩門子公司生產(chǎn)的N67系列鐵氧體磁芯的性能比較,,如圖1所示。圖1(a)為磁導(dǎo)率的相對(duì)變化率與溫度的關(guān)系曲線,;圖1(b)為磁感應(yīng)強(qiáng)度(B)與矯頑力(H)的關(guān)系曲線,;圖1(c)則為損耗.溫度曲線。由圖l(a)可見,,超微晶磁芯的磁導(dǎo)率隨溫度的變化量遠(yuǎn)遠(yuǎn)低于鐵氧體磁芯,,可提高開關(guān)電源的穩(wěn)定性和可靠性。由圖l(b)可見,,超微晶磁芯的/μB乘積比鐵氧體磁芯高許多倍,,這意味著可大大減小高頻變壓器的體積及重量。由圖1(c)可見,,當(dāng)溫度發(fā)生變化時(shí),,超微晶磁芯的損耗遠(yuǎn)低于鐵氧體磁芯。此外,,鐵氧體磁芯的居里點(diǎn)溫度較低,,在高溫下容易退磁。若采用超微晶磁芯制作變壓器,,即可將工作時(shí)的磁感應(yīng)強(qiáng)度變化量從O.4T提高到1.OT,,使功率開關(guān)管的工作頻率降低到100kHz以下。
2.2 超微晶磁芯在共模電感中的應(yīng)用
采用超微晶磁芯制作共模電感(亦稱共模扼流圈)時(shí),,只須繞很少的匝數(shù),,即可獲得很大的電感量,從而降低了銅損,,節(jié)省了線材,,減小了共模電感的體積。用超微晶磁芯制成的共模電感具有很高的共模插入損耗,,能在很寬的頻率范圍內(nèi)對(duì)共模干擾起到抑制作用,,因而不需要使用復(fù)雜的濾波電路。分別用鐵氧體磁芯、超微晶磁芯制成共模電感,,二者的外形比較如圖2所示,。
2.3超微晶磁芯在EMI濾波器中的應(yīng)用
由VAC公司生產(chǎn)的鈷基超微晶磁芯VIT-ROVAC 6025Z,可廣泛用于開關(guān)電源的EMl濾波器中,,能有效地抑制由電流快速變化所產(chǎn)生的尖峰電壓,。在超微晶磁芯上繞一圈或幾圈銅線,即可制成一個(gè)尖峰抑制器,,其構(gòu)造非常簡(jiǎn)單,,而對(duì)噪聲干擾的抑制效果非常好。VITROVAC 6025Z超微晶磁芯具有極低的磁芯損耗和很高的矩形比,,當(dāng)電流突變?yōu)榱銜r(shí)呈現(xiàn)出很大的電感量,,能對(duì)整流管的反向電流起到阻礙作用。由尖峰抑制器構(gòu)成EMI濾波器的電路如圖3所示,。D1為輸出整流管,,D2為續(xù)流二極管。在D1.D2上分別串聯(lián)一個(gè)尖峰抑制器,。L為儲(chǔ)能電感,,C為濾波電容。不加尖峰抑制器時(shí)通過整流管的電流波形如圖4(a)所示,,IF,、IR分別代表整流管的正向工作電流和反向工作電流,frr代表反向恢復(fù)時(shí)間,。由圖4可見,,整流管在反向工作區(qū)域會(huì)產(chǎn)生尖峰電流,而接入尖峰抑制器后,,尖峰電流就被抑制了,。
尖峰抑制器典型的磁滯回線如圖5所示,在到達(dá)工作點(diǎn)1之前(電流導(dǎo)通時(shí)),,磁芯處于飽和狀態(tài),具有非常低的電感量,;當(dāng)電流關(guān)斷時(shí)到達(dá)工作點(diǎn)2(亦稱剩磁點(diǎn))時(shí),,由于整流管存在反向恢復(fù)時(shí)間,使得電流繼續(xù)沿著負(fù)的方向減小,,但超微晶磁芯具有非常高的磁導(dǎo)率,,這時(shí)會(huì)呈現(xiàn)很大的電感量,所以它就不經(jīng)過理論工作點(diǎn)3(該點(diǎn)本應(yīng)對(duì)應(yīng)于出現(xiàn)反向尖峰電流IR的時(shí)刻),,而是直接到達(dá)工作點(diǎn)4(即反向剩磁點(diǎn)),,然后又被磁化開始另一循環(huán)。這種抑制整流管尖峰電流的特性被稱之為“軟恢復(fù)”。圖5中的IFe為激勵(lì)電流,。
下面介紹設(shè)計(jì)尖峰抑制器的公式,。若令整流管的反向恢復(fù)時(shí)間為trr(單位取s),反向電壓為UR (V),,通過整流管的電流為IF(A),,則尖峰抑制器必須滿足下述條件。
式中:Φ為磁通,;
S為磁芯的繞線面積,。
計(jì)算銅導(dǎo)線線徑的公式為
所須繞制的匝數(shù)為
3 結(jié)語
隨著電力電子技術(shù)的發(fā)展和成熟,人們逐漸認(rèn)識(shí)到磁性元件不僅是電源中的功能元件,,同時(shí)其體積,、重量、損耗在整機(jī)中也占相當(dāng)比例,。據(jù)統(tǒng)計(jì),,磁性元件的重量一般是變換器總重量的30%~40%,體積占總體積的20%~30%,,對(duì)于模塊化設(shè)計(jì)的高頻電源,,磁性元件的體積、重量所占的比例還會(huì)更高,。另外,,磁性元件還是影響電源輸出動(dòng)態(tài)性能和輸出紋波的一個(gè)重要因素。因此,,要提高電源的功率密度,、效率和輸出品質(zhì),就應(yīng)對(duì)減小磁性元件的體積,、重量及損耗的相關(guān)技術(shù)進(jìn)行深入研究,,以滿足電源發(fā)展的需要。我們有理由相信,,微晶磁芯在開關(guān)電源中將有非常寬闊的應(yīng)用前景,。