中心議題:
解決方案:
- DC-DC 升壓型開關電源的主振蕩器的設計
- DC-DC 升壓型開關電源的輔助振蕩器的設計
各種便攜式電子產(chǎn)品,, 如照相機、攝像機,、手機,、筆記本電腦、多媒體播放器等都需要DC-DC 變換器等電源管理芯片,。這類便攜式設備一般使用電池供電,, 總能量有限, 因此,, 電源芯片需要最大限度地降低工作電壓,,延長電池的使用壽命。傳統(tǒng)DC-DC 的工作電壓一般都在1. 0 V 以上,, 本文設計了一種DC-DC 升壓型開關電源的低壓啟動電路,, 啟動電壓降低至0. 8 V,該電路采用兩個在不同電源電壓范圍內(nèi)工作頻率較穩(wěn)定的振蕩器電路, 利用電壓檢測模塊進行合理的切換,, 解決了低輸入電壓下電路無法正常工作的問題,, 并在0. 5μm CMOS 工藝庫( VthN = 0. 72 V, VthP = -0. 97 V) 下仿真。仿真結(jié)果表明,, 在0. 8 V 低輸入電壓時,, 通過此升壓型開關電源, 可以將VDD升高至3. 3 V,。
1 電路整體示意圖
DC-DC 升壓型開關電源在低輸入電壓下工作,, 利用控制電路導通和關斷功率管,, 在功率管導通時, 電感儲存能量,; 當功率管關斷時,, 電感釋放能量, 對輸出電容充電,, 輸出電壓升高,。當輸入電源低至1. 0 V 以下, 如果DC-DC 芯片的驅(qū)動電壓取自輸入電源,, 芯片內(nèi)部電路就不能正常工作,, DC-DC 便無法啟動; 如果DC-DC 芯片的驅(qū)動電壓取自輸出電壓,, 同樣,, 芯片根本無法啟動及進行任何升壓動作。本文針對輸入電源電壓變化范圍較大,, 在考慮商業(yè)成本的情況下,, 設計了2 個振蕩器電路:主振蕩器和輔助振蕩器。輔助振蕩器靠輸入電壓供電,,0. 8 V 即能起振,, 在V DD升至1. 9 V 以前控制功率管的導通與關斷, 使V DD逐步抬升,。主振蕩器靠輸出電壓即VDD供電,, 在VDD升至1. 9 V 以后以一個較穩(wěn)定的頻率工作, 抬升并維持輸出電壓,。電路的整體示意圖如圖1所示,。該電路包括主振蕩器、輔助振蕩器以及它們的切換電路,、帶隙基準電路,、PWM 比較器、過壓保護電路,、過流保護電路等,。
圖1 DC-DC 升壓型開關電源芯片的整體示意圖
- KT5032F:京瓷金石推出最小尺寸高精度溫度補償型晶體振蕩器
- 高頻開關電源系統(tǒng)中整流模塊的功能設計
- 開關電源的干擾分析及其抑制措施
- 小型DC/DC開關電源的容性負載研究
- 開關電源的導通、截止與啟動
- 反激式開關電源
- 開關電源原理
- 開關電源電路圖
- 開關電源原理與維修視頻
- 開關電源原理與維修
2 主振蕩器的設計
本文所設計的主振蕩器采用如圖2 所示的環(huán)形振蕩器結(jié)構(gòu),。VC1, VC2 分別為過壓保護電路,, PWM 比較器的輸出信號, MP10和MP11 為帶隙基準提供的鏡像電流,, 合理的控制鏡像電流和電容C1 , C2 的大小,, 即能夠使主振蕩器在1. 9~ 8 V 的V DD區(qū)間輸出350 kHz 左右較穩(wěn)定的振蕩頻率。
圖2 主振蕩器電路
3 輔助振蕩器的設計
輔助振蕩器電路采用環(huán)形振蕩器結(jié)構(gòu), 它利用亞閾值導通的原理,, 使得起振電壓降至0. 8 V, 但是這個輔助振蕩器在0. 8~ 1. 9 V 的VDD區(qū)間里頻率變化很大,, 會在電路啟動階段造成很大的浪涌電流, 造成系統(tǒng)的不穩(wěn)定,。
設計的輔助振蕩器克服了以上缺點, 既保證了在0. 8 V 起振,, 又避免了振蕩頻率變化過大,, 但是, 在輔助振蕩器關斷之后由于工藝偏差可能會在R, S端出現(xiàn)不確定狀態(tài),, 導致功耗過大,, 并造成后續(xù)電路不能正常工作。本文在此基礎上加以改進,, 增加M17 管,, M18管, 所設計的輔助振蕩器如圖3 所示,。
圖3 輔助振蕩器電路
圖3 中,, M1~ M13 是低輸入電壓偏置電流電路, 這個電路的主要功能是在低輸入電壓下產(chǎn)生一個恒定的納安級的偏置電流,。這一不隨電源電壓變化的偏置電流將為圖3 所示的輔助振蕩器提供偏置,。M8 ~ M13為啟動電路, M3 , M4 都工作在亞閾值區(qū):
聯(lián)立式(1) ~ 式(4),,可以得到:
式中: K = (W/ L ) M4 / ( W/ L ) M3 ,,通過式(5) 可以發(fā)現(xiàn),偏置電流I M1 , I M2與輸入電源無關,。
恒流源I I 和I 4 對電容C1 充放電,, 該振蕩器的核心模塊是兩個比較器, M21 , M22 組成COMP1, 該比較器閾值較高,, 為M22 管的導通閾值,, 記為V H = V th。M22 ,M23 , M24 , M25 , M26 , R2 組成COMP2, 該比較器閾值較低,, 記為VL :
因為M26管的電流很小,, 寬長比很大, 故:
SE 為輔助振蕩器切換信號,, SEB 為SE 的反信號,。當V DD低于1. 9 V 時, SE 為高電平,, M17 , M18 都截止,, 不影響R, S 觸發(fā)器的翻轉(zhuǎn), 輔助振蕩器工作,, 開關S1 斷開,, S2 閉合,; 當VDD 高于1. 9 V 時, SE 為低電平,, 輔助振蕩器關斷,, 開關S1 閉合, S2 斷開,, M17 , M18 都導通,, R=1, S= 0, AU XCLK 被鎖定為高電平, 既減小了功耗,, 也避免了輔助振蕩器關斷之后R, S 端出現(xiàn)不確定狀態(tài),。
4 電路整體仿真結(jié)果與分析
整體電路在0. 5μm CMOS 工藝庫( V thN= 0. 72 V,VthP = - 0. 97 V) 下仿真, 仿真條件為VIN = 0. 8 V, 仿真結(jié)果如圖4 所示,。
圖4 兩個振蕩器的切換
從圖4 可以看出,, 電路啟動后, 首先輔助振蕩器V( aux clk) 起振,, V DD逐漸升高,, 升高至1. 4 V 時, 主振蕩器V( mainclk) 起振,, 但此時只有輔助振蕩信號通過開關S2 傳到功率管的柵極,, 當VDD升高至1. 9 V 時, 輔助振蕩器關掉,, 主振蕩器信號通過開關S1 傳到功率管的柵極,, VDD繼續(xù)升高至設定的輸出電壓3. 3 V 以后,由反饋電路控制主振蕩器的開啟與關斷,, 來維持這一輸出電壓,。
5 結(jié) 語
本文針對輸入電源電壓變化范圍較大, 設計了兩種結(jié)構(gòu)不同的振蕩器,, 其在在不同電源電壓范圍內(nèi)工作的頻率較穩(wěn)定,, 并利用電壓檢測模塊進行合理的切換, 解決了低輸入電壓下電路無法啟動的問題,, 是一款適用于商業(yè)開發(fā)的DC-DC 升壓型開關電源,。