過去LED業(yè)者為了獲利充分的白光LED光束,,曾經(jīng)開發(fā)大尺寸LED芯片試圖借此方式達(dá)成預(yù)期目標(biāo),不過實際上白光LED的施加電力持續(xù)超過1W以上時光束反而會下降,,發(fā)光效率則相對降低20~30%,,換句話說白光LED的亮度如果要比傳統(tǒng)LED大數(shù)倍,消費電力特性希望超越熒光燈的話,,就必需先克服下列的四大課題:a.抑制溫升,;b.確保使用壽命;c.改善發(fā)光效率,;d.發(fā)光特性均等化,。
有關(guān)溫升問題具體方法是降低封裝的熱阻抗;維持LED的使用壽命具體方法,,是改善芯片外形,、采用小型芯片;改善LED的發(fā)光效率具體方法是改善芯片結(jié)構(gòu),、采用小型芯片,;至于發(fā)光特性均勻化具體方法是LED的改善封裝方法,,一般認(rèn)為2005~2006年白光LED可望開始采用上述對策。
開發(fā)經(jīng)緯增加電力反而會造成封裝的熱阻抗急遽降至10K/W以下,,因此國外業(yè)者曾經(jīng)開發(fā)耐高溫白光LED試圖借此改善上述問題,,然而實際上大功率LED的發(fā)熱量卻比小功率LED高數(shù)十倍以上,而且溫升還會使發(fā)光效率大幅下跌,,即使封裝技術(shù)允許高熱量不過LED芯片的接合溫度卻有可能超過容許值,,最后業(yè)者終于領(lǐng)悟到解決封裝的散熱問題才是根本方法。
有關(guān)LED的使用壽命,,例如改用硅質(zhì)密封材料與陶瓷封裝材料,,能使LED的使用壽命提高10%,尤其是白光LED的發(fā)光頻譜含有波長低于450nm短波長光線,,傳統(tǒng)環(huán)氧樹脂密封材料極易被短波長光線破壞,,高功率白光LED的大光量更加速密封材料的劣化,根據(jù)業(yè)者測試結(jié)果顯示連續(xù)點燈不到一萬小時,,高功率白光LED的亮度已經(jīng)降低一半以上,,根本無法滿足照明光源長壽命的基本要求。
有關(guān)LED的發(fā)光效率,,改善芯片結(jié)構(gòu)與封裝結(jié)構(gòu),,都可以達(dá)到與低功率白光LED相同水準(zhǔn),主要原因是電流密度提高2倍以上時,,不但不容易從大型芯片取出光線,結(jié)果反而會造成發(fā)光效率不如低功率白光LED的窘境,,如果改善芯片的電極構(gòu)造,,理論上就可以解決上述取光問題。
有關(guān)發(fā)光特性均勻性,,一般認(rèn)為只要改善白光LED的熒光體材料濃度均勻性,,與熒光體的制作技術(shù)應(yīng)該可以克服上述困擾。
如上所述提高施加電力的同時,,必需設(shè)法減少熱阻抗,、改善散熱問題,具體內(nèi)容分別是:
?、俳档托酒椒庋b的熱阻抗
?、谝种品庋b至印刷電路基板的熱阻抗
③提高芯片的散熱順暢性
為了要降低熱阻抗,,許多國外LED廠商將LED芯片設(shè)在銅與陶瓷材料制成的散熱鰭片(heat sink)表面,,接著再用焊接方式將印刷電路板上散熱用導(dǎo)線,連接到利用冷卻風(fēng)扇強制空冷的散熱鰭片上,,根據(jù)德國OSRAM Opto Semiconductors Gmb實驗結(jié)果證實,,上述結(jié)構(gòu)的LED芯片到焊接點的熱阻抗可以降低9K/W,,大約是傳統(tǒng)LED的1/6左右,封裝后的LED施加2W的電力時,,LED芯片的接合溫度比焊接點高18K,,即使印刷電路板溫度上升到500C,接合溫度頂多只有700C左右,;相較之下以往熱阻抗一旦降低的話,,LED芯片的接合溫度就會受到印刷電路板溫度的影響,如此一來必需設(shè)法降低LED芯片的溫度,,換句話說降低LED芯片到焊接點的熱阻抗,,可以有效減輕LED芯片降溫作業(yè)的負(fù)擔(dān)。反過來說即使白光LED具備抑制熱阻抗的結(jié)構(gòu),,如果熱量無法從封裝傳導(dǎo)到印刷電路板的話,,LED溫度上升的結(jié)果發(fā)光效率會急遽下跌,因此松下電工開發(fā)印刷電路板與封裝一體化技術(shù),,該公司將1mm正方的藍(lán)光LED以flip chip方式封裝在陶瓷基板上,,接著再將陶瓷基板粘貼在銅質(zhì)印刷電路板表面,根據(jù)松下表示包含印刷電路板在內(nèi)模塊整體的熱阻抗大約是15K/W左右,。
由于散熱鰭片與印刷電路板之間的密著性直接左右熱傳導(dǎo)效果,,因此印刷電路板的設(shè)計變得非常復(fù)雜,有鑒于此美國Lumileds與日本CITIZEN等照明設(shè)備,、LED封裝廠商,,相繼開發(fā)高功率LED用簡易散熱技術(shù),CITIZEN公司2004年開始樣品出貨的白光LED封裝,,不需要特殊接合技術(shù)也能夠?qū)⒑窦s2~3mm散熱鰭片的熱量直接排放到外部,,根據(jù)該公司表示雖然LED芯片的接合點到散熱鰭片的30K/W熱阻抗比OSRAM的9K/W大,而且在一般環(huán)境下室溫會使熱阻抗增加1W左右,,不過即使是傳統(tǒng)印刷電路板無冷卻風(fēng)扇強制空冷狀態(tài)下,,該白光LED模塊也可以連續(xù)點燈使用。
Lumileds公司2005年開始樣品出貨的高功率LED芯片,,接合容許溫度更高達(dá)+1850C,,比其它公司同級產(chǎn)品高600C,利用傳統(tǒng)RF4印刷電路板封裝時,,周圍環(huán)境溫度400C范圍內(nèi)可以輸入相當(dāng)于1.5W電力的電流(大約是400mA) ,。
如以上介紹Lumileds與CITIZEN公司采取提高接合點容許溫度,德國OSRAM公司則是將LED芯片設(shè)在散熱鰭片表面,,達(dá)成9K/W超低熱阻抗記錄,,該記錄比OSRAM過去開發(fā)同級品的熱阻抗減少40%,值得一提是該LED模塊封裝時,,采用與傳統(tǒng)方法相同的flip chip方式,,不過LED模塊與熱鰭片接合時,,則選擇最接近LED芯片發(fā)光層作為接合面,借此使發(fā)光層的熱量能夠以最短距離傳導(dǎo)排放,。
2003年東芝Lighting公司曾經(jīng)在400mm正方的鋁合金表面,,鋪設(shè)發(fā)光效率為60lm/W低熱阻抗白光LED,無冷卻風(fēng)扇等特殊散熱組件前提下,,試作光束為300lm的LED模塊,,由于東芝Lighting公司擁有豐富的試作經(jīng)驗,因此該公司表示由于仿真分析技術(shù)的進(jìn)步,,2006年之后超過60lm/W的白光LED,,都可以輕松利用燈具、框體提高熱傳導(dǎo)性,,或是利用冷卻風(fēng)扇強制空冷方式設(shè)計照明設(shè)備的散熱,,不需要特殊散熱技術(shù)的模塊結(jié)構(gòu)也能夠使用白光LED。
有關(guān)LED的長壽化,,目前LED廠商采取的對策是變更密封材料,,同時將熒光材料分散在密封材料內(nèi),尤其是硅質(zhì)密封材料比傳統(tǒng)藍(lán)光,、近紫外光LED芯片上方環(huán)氧樹脂密封材料,,可以更有效抑制材質(zhì)劣化與光線穿透率降低的速度。
由于環(huán)氧樹脂吸收波長為400~450nm的光線的百分比高達(dá)45%,,硅質(zhì)密封材料則低于1%,,輝度減半的時間環(huán)氧樹脂不到一萬小時,硅質(zhì)密封材料可以延長到四萬小時左右,,幾乎與照明設(shè)備的設(shè)計壽命相同,,這意味著照明設(shè)備使用期間不需更換白光LED。不過硅質(zhì)樹脂屬于高彈性柔軟材料,,加工上必需使用不會刮傷硅質(zhì)樹脂表面的制作技術(shù),,此外制程上硅質(zhì)樹脂極易附著粉屑,,因此未來必需開發(fā)可以改善表面特性的技術(shù),。
雖然硅質(zhì)密封材料可以確保LED四萬小時的使用壽命,然而照明設(shè)備業(yè)者卻出現(xiàn)不同的看法,,主要爭論是傳統(tǒng)白熾燈與熒光燈的使用壽命,,被定義成“亮度降至30%以下”,亮度減半時間為四萬小時的LED,,若換算成亮度降至30%以下的話,,大約只剩二萬小時左右。目前有兩種延長組件使用壽命的對策,,分別是:
1,、抑制白光LED整體的溫升,;
2、停止使用樹脂封裝方式,。
一般認(rèn)為如果徹底執(zhí)行以上兩項延壽對策,,可以達(dá)成亮度30%四萬小時的要求。抑制白光LED溫升可以采用冷卻LED封裝印刷電路板的方法,,主要原因是封裝樹脂高溫狀態(tài)下,,加上強光照射會快速劣化,依照阿雷紐斯法則溫度降低100C壽命會延長2倍,。
停止使用樹脂封裝可以徹底消滅劣化因素,,因為LED產(chǎn)生的光線在封裝樹脂內(nèi)反射,如果使用可以改變芯片側(cè)面光線行進(jìn)方向的樹脂材質(zhì)反射板,,由于反射板會吸收光線,,所以光線的取出量會急遽銳減,這也是LED廠商一致采用陶瓷系與金屬系封裝材料主要原因,。
有兩種方法可以改善白光LED芯片的發(fā)光效率,,一個是使用面積比小型芯片(1mm2左右)大10倍的大型LED芯片;另外一種方式是利用多個小型高發(fā)光效率LED芯片,,組合成一個單體模塊,。雖然大型LED芯片可以獲得大光束,不過加大芯片面積會有弊害,,例如芯片內(nèi)發(fā)光層的電界不均等,、發(fā)光部位受到局限、芯片內(nèi)部產(chǎn)生的光線放射到外部過程會嚴(yán)重衰減等等,。針對以上問題LED廠商透過電極結(jié)構(gòu)的改良,、采用flip chip封裝方式,同時整合芯片表面加工技巧,,目前已經(jīng)達(dá)成50lm/W的發(fā)光效率,。
有關(guān)芯片整體的電界均等性,自從2,、3年前出現(xiàn)梳子狀與網(wǎng)格狀(mesh)p型電極之后,,采用這種方式的廠商不斷增加,而且電極也朝最佳化方向發(fā)展,。
有關(guān)flip chip封裝方式,,由于發(fā)光層貼近封裝端極易排放熱量,加上發(fā)光層的光線放射到外部時無電極遮蔽的困擾,,所以美國Lumileds與日本豐田合成已經(jīng)正式采用flip chip封裝方式,,2005年開始量產(chǎn)大型LED的松下電器/松下電工與東芝也陸續(xù)跟進(jìn),以往采用wire bonding封裝方式的日亞化學(xué),2004年發(fā)表的50lm/W客戶專用品LED,,也是采用flip chip封裝方式,。
有關(guān)芯片表面加工,它可以防止光線從芯片內(nèi)部朝芯片外部放射時在界面發(fā)生反射,,根據(jù)日本某LED廠商表示flip chip封裝時,,若在光線取出部位藍(lán)寶石基板上設(shè)置凹凸?fàn)罱Y(jié)構(gòu),芯片外部的取出光束可以提高30%,。