《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 開關(guān)電源中開關(guān)管及二極管 EMI抑制方法分析研究
開關(guān)電源中開關(guān)管及二極管 EMI抑制方法分析研究
摘要: 隨著電子技術(shù)的不斷進(jìn)步,開關(guān)電源向高頻化、高效化方向迅猛發(fā)展,,EMI抑制已成為開關(guān)電源設(shè)計(jì)的重要指標(biāo),。本文結(jié)合開關(guān)電源中開關(guān)管及二極管EMI產(chǎn)生機(jī)理,,列舉出:并接吸收電路、串接可飽和磁芯線圈,、傳統(tǒng)準(zhǔn)諧振技術(shù),、LLC串聯(lián)諧振技術(shù)四種抑制EMI的方法,并對其抑制效果進(jìn)行比較分析,。
Abstract:
Key words :

1  引言 
    電磁干擾( EMI) 就是電磁兼容不足,是破壞性電磁能從一個(gè)電子設(shè)備通過傳導(dǎo)或輻射到另一個(gè)電子設(shè)備的過程,。近年來,開關(guān)電源以其頻率高,、效率高,、體積小、輸出穩(wěn)定等優(yōu)點(diǎn)而迅速發(fā)展起來,。開關(guān)電源已逐步取代了線性穩(wěn)壓電源,,廣泛應(yīng)用于計(jì)算機(jī)、通信,、自控系統(tǒng),、家用電器等領(lǐng)域。但是由于開關(guān)電源工作在高頻狀態(tài)及其高di/dt和高dv/dt,,使開關(guān)電源存在非常突出的缺點(diǎn)——容易產(chǎn)生比較強(qiáng)的電磁干擾(EMI)信號,。EMI信號不但具有很寬的頻率范圍,,還具有一定的幅度,經(jīng)傳導(dǎo)和輻射會(huì)污染電磁環(huán)境,,對通信設(shè)備和電子產(chǎn)品造成干擾,。所以,如何降低甚至消除開關(guān)電源中的EMI問題已經(jīng)成為開關(guān)電源設(shè)計(jì)師們非常關(guān)注的問題,。本文著重介紹開關(guān)電源中開關(guān)管及二極管EMI的四種抑制方法,。 
     
2  開關(guān)管及二極管EMI產(chǎn)生機(jī)理 
    開關(guān)管工作在硬開關(guān)條件下開關(guān)電源自身產(chǎn)生電磁干擾的根本原因,就是在其工作過程中的開關(guān)管的高速開關(guān)及整流二極管的反向恢復(fù)產(chǎn)生高di/dt和高dv/dt,,它們產(chǎn)生的浪涌電流和尖峰電壓形成了干擾源,。開關(guān)管工作在硬開關(guān)時(shí)還會(huì)產(chǎn)生高di/dt和高dv/dt,從而產(chǎn)生大的電磁干擾,。圖1繪出了接感性負(fù)載時(shí),,開關(guān)管工作在硬開關(guān)條件下的開關(guān)管的開關(guān)軌跡,圖中虛線為雙極性晶體管的安全工作區(qū),,如果不改善開關(guān)管的開關(guān)條件,其開關(guān)軌跡很可能會(huì)超出安全工作區(qū),,導(dǎo)致開關(guān)管的損壞,。由于開關(guān)管的高速開關(guān),使得開關(guān)電源中的高頻變壓器或儲(chǔ)能電感等感性負(fù)載在開關(guān)管導(dǎo)通的瞬間,,迫使變壓器的初級出現(xiàn)很大的浪涌電流,,將造成尖峰電壓。開關(guān)管在截止期間,,高頻變壓器繞組的漏感引起的電流突變,,從而產(chǎn)生反電勢E=-Ldi/dt,其值與電流變化率(di/dt)成正比,,與漏感量成正比,,疊加在關(guān)斷電壓上形成關(guān)斷電壓尖峰,從而形成電磁干擾,。此外,,開關(guān)管上的反向并聯(lián)二極管的反向恢復(fù)特性不好,或者電壓尖峰吸收電路的參數(shù)選擇不當(dāng)也會(huì)造成電磁干擾,。由整流二極管的反向恢復(fù)引起的干擾源有兩個(gè),,它們分別是輸入整流二極管和輸出整流二極管。它們都是由電流的換向引起的干擾,。由圖2表明,,t0=0時(shí)二極管導(dǎo)通,二極管的電流迅速增大,,但是其管壓降不是立即下降,,而會(huì)出現(xiàn)一個(gè)快速的上沖,。其原因是在開通過程中,二極管PN結(jié)的長基區(qū)注入足夠的少數(shù)載流子,,發(fā)生電導(dǎo)調(diào)制需要一定的時(shí)間tr,。該電壓上沖會(huì)導(dǎo)致一個(gè)寬帶的電磁噪聲。而在關(guān)斷時(shí),,存在于PN結(jié)長基區(qū)的大量過剩少數(shù)載流子需要一定時(shí)間恢復(fù)到平衡狀態(tài)從而導(dǎo)致很大的反向恢復(fù)電流,。當(dāng)t=t1時(shí),PN結(jié)開始反向恢復(fù),,在t1-t2時(shí)間內(nèi),,其他過剩載流子依靠復(fù)合中心復(fù)合,回到平衡狀態(tài),。這時(shí)管壓降又出現(xiàn)一個(gè)負(fù)尖刺,。通常t2《t1,所以該尖峰是一個(gè)非常窄的尖脈沖,,產(chǎn)生的電磁噪聲比開通時(shí)還要強(qiáng),。因此,整流二極管的反向恢復(fù)干擾也是開關(guān)電源中的一個(gè)重要干擾源,。 

3  EMI抑制方法 
    di/dt和dv/dt是開關(guān)電源自身產(chǎn)生電磁干擾的關(guān)鍵因素,,減小其中的任何一個(gè)都可以減小開關(guān)電源中的電磁干擾。由上述可知,,di/dt和dv/dt主要是由開關(guān)管的快速開關(guān)及二極管的反向恢復(fù)造成的,。所以,如果要抑制開關(guān)電源中的EMI就必須解決開關(guān)管的快速開關(guān)及二極管的反向恢復(fù)所帶來的問題,。 
3.1 并接吸收裝置 
    采取吸收裝置是抑制電磁干擾的好辦法,。吸收電路的基本原理就是開關(guān)在斷開時(shí)為開關(guān)提供旁路,吸收蓄積在寄生分布參數(shù)中的能量,,從而抑制干擾發(fā)生,。常用的吸收電路有RC、RCD,。此類吸收電路的優(yōu)點(diǎn)就是結(jié)構(gòu)簡單,、價(jià)格便宜、便于實(shí)施,,所以是常用的抑制電磁干擾的方法,。 
 
    (1)并接RC電路 
    在開關(guān)管T兩端加RC吸收電路,如圖3所示。在二次整流回路中的整流二極管D兩端加RC吸收電路,如圖5所示,抑制浪涌電流,。 
    (2)并接RCD電路 
    在開關(guān)管T 兩端加RCD吸收電路,如圖4所示,。 
3.2 串接可飽和磁芯線圈 
    二次整流回路中,與整流二極管D串接可飽和磁芯的線圈,如圖5所示。可飽和磁芯線圈在通過正常電流時(shí)磁芯飽和,電感量很小,不會(huì)影響電路正常上作,。一旦電流要反向時(shí),磁芯線圈將產(chǎn)生很大的反電動(dòng)勢,阻止反向電流的上升,。因此,將它與二極管D串聯(lián)就能有效地抑制二極管D的反向浪涌電流,。 
3.3 傳統(tǒng)準(zhǔn)諧振技術(shù) 
    一般來說,,可以采用軟開關(guān)技術(shù)來解決開關(guān)管的問題,如圖6所示,。圖6給出了開關(guān)管工作在軟開關(guān)條件下的開關(guān)軌跡,。軟開關(guān)技術(shù)主要減小開關(guān)管上的開關(guān)損耗,也可以抑制開關(guān)管上的電磁干擾,。在所有的軟開關(guān)技術(shù)中,,準(zhǔn)諧振抑制開關(guān)管上電磁干擾的效果比較好,所以本文以準(zhǔn)諧振技術(shù)為例,,介紹軟開關(guān)技術(shù)抑制EMI,。所謂準(zhǔn)諧振就是開關(guān)管在電壓谷底開通,見圖7,。開關(guān)中寄生電感與電容作為諧振元件的一部分,,可完全控制開關(guān)導(dǎo)通時(shí)電流浪涌與斷開時(shí)電壓浪涌的發(fā)生。采用這種方式不僅能把開關(guān)損耗減到很小,,而且能降低噪聲,。谷底開關(guān)要求關(guān)斷時(shí)間中儲(chǔ)存在中的能量必須在開關(guān)開通時(shí)釋放掉。它的平均損耗為: 


    由此公式可以看出,,減小會(huì)導(dǎo)致大大降低,從而減小開關(guān)上的應(yīng)力,,提高效率,,減小dv/dt,即減小EMI,。  


3.4 LLC串聯(lián)諧振技術(shù) 
    圖8為LLC串聯(lián)諧振的拓?fù)浣Y(jié)構(gòu),。從圖中可以看出,兩個(gè)主開關(guān)Ql和Q2構(gòu)成一個(gè)半橋結(jié)構(gòu),,其驅(qū)動(dòng)信號是固定50%占空比的互補(bǔ)信號,,電感Ls、電容Cs和變壓器的勵(lì)磁電感Lm構(gòu)成一個(gè)LLC諧振網(wǎng)絡(luò),。在LLC串聯(lián)諧振變換器中,,由于勵(lì)磁電感Lm串聯(lián)在諧振回路中,開關(guān)頻率可以低于LC的本征諧振頻率fs,,而只需高于LLC的本征諧振頻率fm便可實(shí)現(xiàn)主開關(guān)的零電壓開通,。所以,LLC串聯(lián)諧振可以降低主開關(guān)管上的EMI,把電磁輻射干擾(EMI)減至最少,。在LLC諧振拓?fù)渲?,只要諧振電流還沒有下降到零,頻率對輸出電壓的調(diào)節(jié)趨勢就沒有變,,即隨著頻率的下降輸出電壓將繼續(xù)上升,,同時(shí)由于諧振電流的存在,半橋上下兩個(gè)主開關(guān)的零電壓開通條件就得以保證,。因此,,LLC諧振變換器的工作頻率有一個(gè)下限,即Cs與Ls和Lm的串聯(lián)諧振頻率fm,。在工作頻率范圍fm<f<fs內(nèi),,原邊的主開關(guān)均工作在零電壓開通的條件下,并且不依賴于負(fù)載電流的大小,。同時(shí),,副邊的整流二極管工作在斷續(xù)或臨界斷續(xù)狀態(tài)下,整流二極管可以零電流條件下關(guān)斷,,其反向恢復(fù)的問題得以解決,,不再有電壓尖峰產(chǎn)生。 
 
     
4  抑制方法對比分析研究 
    采用并聯(lián)RC吸收電路和串聯(lián)可飽和磁芯線圈均為簡單常用的方法,,主要是抑制高電壓和浪涌電流,,起到吸收和緩沖作用,其對EMI的抑制效果相比準(zhǔn)諧振技術(shù)與LLC串聯(lián)諧振技術(shù)較差,。下面著重對準(zhǔn)諧振技術(shù)與LLC串聯(lián)諧振技術(shù)進(jìn)行比較分析,。在準(zhǔn)諧振中加入RCD緩沖電路,即由二極管,,電容器和電阻組成的尖峰電壓吸收電路,,其主要作用是用來吸收MOSFET功率開關(guān)管在關(guān)斷時(shí)產(chǎn)生的上升沿尖峰電壓能量,減少尖峰電壓幅值,,防止功率開關(guān)管過電壓擊穿,。但是,這樣將會(huì)增加損耗,,而且由于緩沖電路中采用了二極管,,也將增加二極管的反向恢復(fù)問題。由上述分析可以看出,,準(zhǔn)諧振技術(shù)主要減小開關(guān)管上的開關(guān)損耗,,也可以抑制開關(guān)管上的電磁干擾,但是它不能抑制二極管上的電磁干擾,,而且當(dāng)輸入電壓增大時(shí),,頻率提高;當(dāng)輸出負(fù)載增大時(shí),頻率降低,,所以它的抑制效果不是很好,,一般不能達(dá)到人們所希望的結(jié)果。所以如果想得到更好的抑制效果,,必須解決二極管上的反向恢復(fù)問題,,這樣抑制效果才能令人們滿意。LLC串聯(lián)諧振拓?fù)浣Y(jié)構(gòu)比準(zhǔn)諧振抑制EMI的效果好,。其優(yōu)點(diǎn)已在上面進(jìn)行了分析,。 
     
5  結(jié)語 
    隨著開關(guān)電源技術(shù)的不斷發(fā)展,其體積越來越小,,功率密度越來越大,,EMI問題已經(jīng)成為開關(guān)電源穩(wěn)定性的一個(gè)關(guān)鍵因素。開關(guān)電源內(nèi)部開關(guān)管及二極管是EMI主要發(fā)生源,。本文主要介紹了四種抑制開關(guān)管及二極管EMI的方法并進(jìn)行了分析對比,,目的是找到更為有效的抑制EMI的方法。通過分析對比得出LLC串聯(lián)諧振技術(shù)的抑制效果較好,,而且其效率隨電壓升高而升高,,其工作頻率隨電壓變化較大,而隨負(fù)載的變化較小,。 

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。