引 言
傳統(tǒng)氣體壓力測量儀器的傳感器部分與數(shù)據(jù)采集系統(tǒng)是分離的,抗干擾的能力較差,,并且通常被測對象的壓力變化較快,。因此不僅要求系統(tǒng)具有較快的數(shù)據(jù)吞吐速率,而且要能夠適應(yīng)復(fù)雜多變的工業(yè)環(huán)境,,具有較好抗干擾性能,、自我檢測和數(shù)據(jù)傳輸?shù)墓δ堋?/p>
在此,利用FPGA具有擴展靈活,,可實現(xiàn)片上系統(tǒng)(SoC),,同時具有多種IP核可供使用等優(yōu)點,設(shè)計了能夠控制多路模擬開關(guān),、A/D轉(zhuǎn)換,、快速數(shù)據(jù)處理與傳輸、誤差校正,、溫度補償?shù)闹悄軅鞲衅飨到y(tǒng),;同時將傳感器與數(shù)據(jù)采集處理控制系統(tǒng)集成在一起,使系統(tǒng)更加緊湊,,提高了系統(tǒng)適應(yīng)工業(yè)現(xiàn)場的能力,。
1 系統(tǒng)性能及元器件
1.1 智能傳感器系統(tǒng)性能要求
傳感器壓力測量范圍:0~5 MPa;系統(tǒng)精度:±0.1%FS,;1通道模擬電壓輸入(壓力信號)大于250 sampies/通道/s,;采用串行RS 232C接口輸出。
1.2 系統(tǒng)主要元器件及性能
根據(jù)系統(tǒng)的精度指標的要求選擇器件:
FPGA芯片 選用Altera的CycloneⅡEP2C5,,其邏輯單元有4 608個LE,,26個M4K RAM塊,142個用戶I/O引腳,。
壓力傳感器 采用PDCR130W,,壓力范圍0~7 MPa,工作電壓直流10~30 VDC,,輸出0~10 V,,精度±0.05%FS,使用溫度范圍-40~+125℃,,溫度影響±0.015%FS/℃,。
溫度傳感器 采用高精度集成溫度傳感器LM335,其靈敏度為10 mV/K,,精度為1℃,,溫度范圍-40~+100℃。
A/D轉(zhuǎn)換器 選擇內(nèi)含采樣保持器的12位A/D轉(zhuǎn)換器AD1674,,其轉(zhuǎn)換時間為10 μs,,0~10 V單極輸入或±5 V雙極輸入,,可并行12位輸出。
多路模擬開關(guān) 采用四選一多路模擬開關(guān)AD7502,,其引腳設(shè)置為EN=1的使能信號,;A1A0引腳為通道選擇信號。
輸出電平轉(zhuǎn)換接口 系統(tǒng)使用MAX232芯片完成TTL和RS 232C電平的轉(zhuǎn)換,。
2 系統(tǒng)誤差校正方法
2.1 零點漂移和增益誤差的校正方法
在智能儀表中,,誤差模型的誤差校正公式為:
式中:b1和b0為誤差校正因子。誤差校正電路模型如圖1所示,,其中x為被測信號,;y為系統(tǒng)輸出;ε,,k,,i為影響系統(tǒng)的未知量。
誤差校正過程為:
當S1閉合時,,x=0,,依據(jù)誤差校正公式得到式(2),用于系統(tǒng)零點校準,;
當S2閉合時,,x=E(標準電壓),得到公式(3),,用于系統(tǒng)增益誤差校正,;
聯(lián)立式(2)、式(3)可得誤差校正因子:
當進行實際測量時S3閉合,,利用計算出的誤差校正因子和誤差校正公式(1),,即可求出校正后的輸出信號y。 function ImgZoom(Id)//重新設(shè)置圖片大小 防止撐破表格 { var w = $(Id).width; var m = 650; if(w
2.2 傳感器溫度補償方法
對壓力傳感器來說,,環(huán)境溫度對其測量結(jié)果有較大的影響,,為了消除溫度引起的誤差,需要對傳感器的信號做溫度補償,。通過測量傳感器的工作溫度實現(xiàn)傳感器溫度的補償,。傳感器的溫度誤差校正模型為:
式中:y為測量值;yc經(jīng)溫度補償后的測量值,;△φ為傳感器的實際工作溫度與標準測量溫度之差,;a0為校正溫度變化引起的傳感器標度變化系數(shù),a1為校正溫度引起的傳感器零位漂移變化系數(shù),,這兩個系數(shù)反映了傳感器的溫度特性。
2.3 隨機誤差消除方法
系統(tǒng)采用算術(shù)平均的數(shù)字濾波方法消除系統(tǒng)的隨機誤差,,通過連續(xù)N個采樣值取其算術(shù)平均值,,得數(shù)學(xué)表達式為:
適合用于對具有隨機干擾信號的濾波,。
3 系統(tǒng)硬件結(jié)構(gòu)設(shè)計
依據(jù)系統(tǒng)的誤差校正和溫度補償方法,可得系統(tǒng)的硬件連接結(jié)構(gòu)如圖2所示,。圖2中模擬多路開關(guān)AD7502的4個輸入通道分別為:A1A0=00,,選通S0,S0通道接地,,用于零點漂移校準,;A1A0=01,選通S1,,S1通道接+5 V(為AD1674最大輸入電壓的50%),,用于增益誤差校正;A1A0=10,,選通S2,,S2通道接溫度測量信號,用于傳感器的溫度補償,;A1A0=11,,選通S3,S3通道連接壓力測量信號,。通道選通信號A0,,A1由FPGA芯片中的DAS_A0和DAS_A1引腳控制。
系統(tǒng)中A/D轉(zhuǎn)換器AD1674采用獨立工作模式,,其控制引腳設(shè)置為:CE和12/8接高電平,;CS和A0接低電平。此時,,AD1674設(shè)置為12位A/D轉(zhuǎn)換,,12位數(shù)據(jù)輸出,其轉(zhuǎn)換完全由R/C控制,,如圖2所示,。當R/C=O時,啟動12位A/D轉(zhuǎn)換,;當A/D轉(zhuǎn)換結(jié)束時,,狀態(tài)信號STS=0,否則STS=1,;當R/C=1時,,讀取12位A/D轉(zhuǎn)換數(shù)據(jù)。R/C信號由FPGA芯片的DAS_RC控制,。整個系統(tǒng)由基于FPGA的片上系統(tǒng)(SoC)控制,。其中,F(xiàn)PGA芯片中的DAS_STS,DAS_RC,,DAS_IN,,DAS_A引腳為用戶定制邏輯,即DAS控制單元的外部接口,,用于控制AD1674的工作時序轉(zhuǎn)換和AD7502的通道選擇,。
3.1 SoC結(jié)構(gòu)的實現(xiàn)
SoPC設(shè)計由CPU、存儲器接口,、標準外設(shè)和用戶定制邏輯單元模塊等組件構(gòu)成,。Altera的SoPCBuilder工具提供了大量IP核可供調(diào)用,可以很方便地在單片F(xiàn)PGA芯片上配置嵌入NoisⅡ處理器軟核,、片上RAM和RS 232控制器,、擴展片外存儲器、用戶定制邏輯單元,,同時自動地為系統(tǒng)的每個外設(shè)分配地址,、連接系統(tǒng)總線,確定設(shè)備優(yōu)先級,,其內(nèi)部結(jié)構(gòu)如圖3所示,。
function ImgZoom(Id)//重新設(shè)置圖片大小 防止撐破表格 { var w = $(Id).width; var m = 650; if(w
3.2 數(shù)據(jù)采集控制單元的實現(xiàn)
數(shù)據(jù)采集系統(tǒng)(DAS)控制單元是整個系統(tǒng)的核心,其輸入端口及其功能:DAS_STS用于接收AD1674的STS狀態(tài)信號,;DAS_IN(12位)用于接收AD1674并行12位轉(zhuǎn)換輸出,;CLK,RST用作系統(tǒng)時鐘和RESET的信號,。輸出端口DAS_RC接AD1674的R/C端,,用以控制A/D轉(zhuǎn)換器的啟動和讀數(shù);DAS_A用作控制AD7502的A1A0通道選通信號,;DAS_OUT(加通道的序號為16位)用作DAS控制單元的16位輸出數(shù)據(jù),。
DAS控制單元的有限狀態(tài)機(FSM)有4個狀態(tài),分別為St0,,St1,,St2,St3,。St0為選擇通道,,啟動A/D轉(zhuǎn)換,進入St1狀態(tài),;St1為等待轉(zhuǎn)換結(jié)束,,若轉(zhuǎn)換結(jié)束,進入St2狀態(tài),,否則保持在St1狀態(tài),;St2為發(fā)出讀數(shù)據(jù)信號,進入St3狀態(tài);St3為輸出轉(zhuǎn)換數(shù)據(jù),;選擇其他通道,,返回St0狀態(tài)。DAS控制單元采用VHDL語言進行開發(fā),,程序的部分代碼如下所示:
DAS控制單元的仿真如圖4所示。圖中顯示控制單元運行正確,。
3.3 智能傳感器系統(tǒng)軟件工作流程
系統(tǒng)中誤差校正和溫度補償由系統(tǒng)軟件控制完成,。系統(tǒng)軟件由SoPC Builder工具中的軟件開發(fā)工具(SDK)進行開發(fā)。系統(tǒng)軟件流程如圖5所示,。
系統(tǒng)上電初始化并啟動DAS控制單元,,選通每個通道并消除每個通道的隨機誤差;然后根據(jù)校正過的0通道和1通道的數(shù)值,,實時計算出誤差校正因子,,依據(jù)誤差校正公式(1)實時校正零點漂移校準和增益誤差,再根據(jù)測量得到傳感器的工作溫度,,計算與標準溫度的差值,,通過查表獲得傳感器溫度變化系數(shù),最后依據(jù)溫度補償公式(5)校正測量壓力數(shù)據(jù),,并將數(shù)據(jù)輸出,。
4 結(jié) 語
在系統(tǒng)的設(shè)計過程中,充分利用FPGA構(gòu)建系統(tǒng)靈活,,軟,、硬件開發(fā)相結(jié)合的特點,在滿足系統(tǒng)性能的基礎(chǔ)上,,合理分配軟硬件功能,,簡化系統(tǒng)設(shè)計。FPGA把過去由分立芯片實現(xiàn)的系統(tǒng)放在單個芯片中,,這種單片系統(tǒng)的設(shè)計,,大大提高了系統(tǒng)的穩(wěn)定性和可靠性,同時提高了系統(tǒng)抗工業(yè)現(xiàn)場干擾的能力,。