《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 業(yè)界動(dòng)態(tài) > 鋰離子電池充電管理芯片的研究及其低功耗設(shè)計(jì)

鋰離子電池充電管理芯片的研究及其低功耗設(shè)計(jì)

2016-02-24

  1.1鋰離子電池管理芯片的應(yīng)用及發(fā)展

  1.1.1鋰離子電池的特點(diǎn)及應(yīng)用

  早在1912年,,以金屬鋰作為電極的鋰電池(Li Battery)的研究就開(kāi)始了,到上世紀(jì)七十年代,,不可充電的鋰電池才首次應(yīng)用在商業(yè)領(lǐng)域,。上世紀(jì)八十年代,研究的重點(diǎn)集中在可充電的鋰離子電池(Li-ion Battery)上,,但并沒(méi)有成功解決電池的安全性問(wèn)題,。一直到1991年,Sony公司首次實(shí)現(xiàn)了鋰離子電池商業(yè)化,,被認(rèn)為是能源技術(shù)領(lǐng)域的一個(gè)重要的里程牌,。

  如表1.1所示,和Ni-Cd等其它二次電池相比,,鋰離子電池具有更高的能量密度(包括質(zhì)量比能量和體積比能量),、更高的充放電循環(huán)、更低的放電率和更高的單節(jié)電池工作電壓(3.6V),。顯然,,鋰離子電池的高工作電壓將有利于減小移動(dòng)裝備的尺寸,高能量密度將有利于電池的輕量化,,低放電率也能保證存儲(chǔ)期間的正常使用,。

20130304020046834.jpg

  這十幾年間,鋰離子電池的應(yīng)用獲得了巨大發(fā)展,,現(xiàn)已成為通訊類(lèi)電子產(chǎn)品的主要能源之一,,被廣泛應(yīng)用在筆記本電腦、GSM/CDMA,、數(shù)碼相機(jī),、攝像機(jī)及PDA等高端便攜式消費(fèi)類(lèi)電子產(chǎn)品中[2]。如果將1997年以前適應(yīng)筆記本電腦市場(chǎng),、降低電池成本,、提高容量稱(chēng)為鋰離子電池第一個(gè)黃金時(shí)期,那么在手機(jī),、攝像機(jī)等便攜電子產(chǎn)品的普及將使鋰離子電池產(chǎn)業(yè)進(jìn)入第二個(gè)黃金時(shí)期,。比如,2004年94%的手機(jī)電池是鋰離子電池,。隨著技術(shù)的發(fā)展,,對(duì)鋰離子電池的需求將日益旺盛,2005年預(yù)計(jì)達(dá)12億只[3],。從鋰離子電池的生產(chǎn)和銷(xiāo)售分布來(lái)看,,在2000年以前,日本是鋰離子電池的最大生產(chǎn)和銷(xiāo)售國(guó),,市場(chǎng)占有率達(dá)到95%以上,。但近年來(lái)隨著中國(guó)和韓國(guó)的迅速崛起,日本一支獨(dú)秀的格局已經(jīng)被逐漸打破,,預(yù)計(jì)2005年日本鋰離子電池的全球市場(chǎng)占有率將跌至50%以下,。

  1.1.2鋰離子電池管理芯片的重要性

  在鋰離子電池的研究開(kāi)發(fā)中,提高使用安全性問(wèn)題一直是研究的重點(diǎn),。由于質(zhì)量比能量高,,而且電解液大多為有機(jī)易燃物等,當(dāng)電池?zé)崃慨a(chǎn)生速度大于散熱速度時(shí),,就有可能出現(xiàn)安全性問(wèn)題,。有研究指出,鋰離子電池在濫用時(shí),,有可能達(dá)到700°C以上的高溫,,從而導(dǎo)致電池出現(xiàn)冒煙、著火乃至爆炸,;在過(guò)放電到低于1V時(shí),,正極表面將析出銅,造成電池內(nèi)部短路,;在過(guò)流情況下,,電池內(nèi)部溫度也極易升高,使電池性能惡化乃至損壞,。圖1.1.1給出了在過(guò)充電和過(guò)放電情況下,,鋰離子電池內(nèi)部的化學(xué)反應(yīng)及性能的變化,式中M代表Co,、Al,、Ni等金屬離子。

20130304020046886.jpg

  要提高鋰離子電池使用的安全性,,除了進(jìn)行深入的機(jī)理研究,,選擇合適的電極材料及優(yōu)化整體結(jié)構(gòu)之外,還必須通過(guò)電池外圍的集成電路(IC)對(duì)電池進(jìn)行有效的管理。有報(bào)道稱(chēng)近年來(lái),,電池管理(Battery Management)芯片,,無(wú)論是銷(xiāo)售額還是銷(xiāo)售量在功耗管理(Power Management)芯片中有望增長(zhǎng)得最快。鋰離子電池管理目標(biāo)包含對(duì)電池電壓監(jiān)測(cè),、充放電電流監(jiān)測(cè),、溫度監(jiān)測(cè)、數(shù)據(jù)計(jì)算以及存儲(chǔ),。管理芯片中,,包括保護(hù)電路、燃料檢測(cè)電路以及能夠?qū)嵭须姵財(cái)?shù)據(jù)傳輸?shù)南到y(tǒng)被稱(chēng)為智能電池系統(tǒng)(Smart Battery System,, SBS),。SBS電池組結(jié)構(gòu)如圖1.1.2所示,它由溫度傳感器,、能檢測(cè)雙向電流的電流檢測(cè)器,、ADC、EEPROM存儲(chǔ)器,、時(shí)鐘,、狀態(tài)/控制電路、與主系統(tǒng)單線接口及地址,、鋰離子電池保護(hù)電路等組成,。其中由ADC轉(zhuǎn)換的數(shù)字量存儲(chǔ)在相應(yīng)的存儲(chǔ)器內(nèi),通過(guò)單線接口與主系統(tǒng)連接,,對(duì)內(nèi)部存儲(chǔ)器進(jìn)行讀/寫(xiě)的訪問(wèn)及控制,。SBS除了能對(duì)電池進(jìn)行有效地保護(hù)之外,還能輸出電池剩余能量信號(hào)(可用LCD顯示),,這將是鋰離子電池管理芯片發(fā)展的主要目標(biāo),。目前,SBS應(yīng)用的協(xié)議發(fā)展到了SBdata1.1(數(shù)據(jù)協(xié)議)和SMbus2.0(總線協(xié)議),,而在IBM和索尼等筆記本電腦中,,有幾個(gè)型號(hào)已采用了基于電池保護(hù)電路的SBS.

  在鋰離子電池管理芯片中,保護(hù)電路由于能夠?qū)崿F(xiàn)對(duì)電池電壓,、充放電電流監(jiān)測(cè),,它既能單獨(dú)內(nèi)置在鋰離子電池中,也能在SBS中充當(dāng)二次保護(hù)電路用,,更可貴的是,,它能實(shí)現(xiàn)對(duì)Ni-Cd、Ni-H電池的同等保護(hù),,所以在電池管理芯片中占了很大的份額,。

  1.1.3電池管理芯片的發(fā)展現(xiàn)狀

  目前,,國(guó)外的Unitrode、Texas,、Dallas等公司紛紛開(kāi)展了對(duì)鋰離子電池管理芯片的研究和開(kāi)發(fā),。和電池產(chǎn)量在全球市場(chǎng)占有率不斷下滑不同的是,日本的鋰離子電池管理芯片,,尤其是保護(hù)電路的設(shè)計(jì)開(kāi)發(fā),,始終在全球占有主導(dǎo)地位。最著名的產(chǎn)品是精工的S82系列,、理光的R54系列和MITSUMI的MM3061系列等。其中,,S82系列產(chǎn)品因?yàn)楣δ荦R全,、精度高和功耗低,被認(rèn)為是鋰離子電池管理芯片設(shè)計(jì)的領(lǐng)跑者之一,。而在中國(guó),,除了臺(tái)灣有個(gè)別單位已開(kāi)發(fā)出了功能較為簡(jiǎn)單的保護(hù)芯片外,近年來(lái),,雖然也有個(gè)別大陸單位開(kāi)始研究鋰離子電池保護(hù)電路,,但都處于起步階段,精度低,、沒(méi)有統(tǒng)一的保護(hù)標(biāo)準(zhǔn),。更主要的是,目前國(guó)內(nèi)還沒(méi)有具有獨(dú)立自主產(chǎn)權(quán)的電路出現(xiàn),。

  目前,,為了在最長(zhǎng)的電池使用時(shí)間和最輕的重量之間取得平衡,越來(lái)越多的便攜式設(shè)備如手機(jī),、攝像機(jī)等都采用單節(jié)鋰離子電池作為主電源,。目前單節(jié)鋰離子電池的管理芯片研究,重點(diǎn)在于:

 ?、俪艘獙?duì)電池充電過(guò)程進(jìn)行有效管理外,,還更迫切地需要實(shí)現(xiàn)對(duì)充電及使用過(guò)程的全程保護(hù)。這要求芯片不僅具有完備的保護(hù)功能,,而且保護(hù)精度如電池電壓,、延時(shí)時(shí)間的檢測(cè)和控制精度達(dá)到實(shí)用要求。

 ?、趹?yīng)該盡可能地降低功耗以延長(zhǎng)供電電池的使用壽命,。作為封裝后電池的一部分,芯片的驅(qū)動(dòng)始終來(lái)自被管理的電池,,因此要求芯片要有足夠低的電流消耗,。

  作為一個(gè)數(shù)?;旌闲盘?hào)電路,可以借鑒已有的一些功耗優(yōu)化方法,,但是結(jié)合應(yīng)用特點(diǎn)降低功耗,,還要進(jìn)行更深入的理論探索。

  因此,,研究以單節(jié)鋰離子保護(hù)電路為代表的電池管理芯片的低功耗,,從系統(tǒng)功能實(shí)現(xiàn)到數(shù)模混合信號(hào)電路低功耗的設(shè)計(jì),,對(duì)電池管理芯片的設(shè)計(jì)乃至SBS的開(kāi)發(fā)都將有相當(dāng)?shù)慕梃b作用,。

  1.2數(shù)模混合信號(hào)電路的低功耗設(shè)計(jì)

  1.2.1集成電路的低功耗設(shè)計(jì)動(dòng)因

  在集成電路發(fā)展的早期到上世紀(jì)八十年代,,功耗問(wèn)題并不是很突出,。在這段時(shí)間內(nèi),由于電路系統(tǒng)規(guī)模普遍較小和CMOS工藝的興起,,低功耗尚未被作為IC設(shè)計(jì)的重要因素,。

  在1968年,Intel公司的創(chuàng)始人之一G. Moore就預(yù)測(cè),,每18到24個(gè)月,,IC的集成度將提高一倍,這就是著名的Moore定律,。而事實(shí)上,,這四十多年來(lái),IC技術(shù)就是基本上遵循著Moore定律取得了巨大的發(fā)展,。集成電路經(jīng)歷了從小規(guī)模集成(SSI)發(fā)展到超大規(guī)模(VLSI)到現(xiàn)在的甚大規(guī)模集成(ULSI),,即一個(gè)芯片上可以包含一億以上的元件的水平。雖然量子效應(yīng)和經(jīng)濟(jì)的限制將使IC集成度增長(zhǎng)的速度趨緩,,但是可以預(yù)見(jiàn)的是,,隨著新技術(shù)的采用IC的集成度持續(xù)發(fā)展的勢(shì)頭將不會(huì)改變。同時(shí),,系統(tǒng)的復(fù)雜度也在不斷地提高,,即將不同功能的器件和電路都集成到一個(gè)芯片上,構(gòu)成一個(gè)系統(tǒng)集成芯片(SOC),。顯然,,集成電路復(fù)雜度和集成度的提高使得低功耗正成為一個(gè)不可或缺的電路設(shè)計(jì)指標(biāo)。

  首先,,過(guò)高的功耗將使芯片容易過(guò)熱,,電路可靠性下降,最終導(dǎo)致失效,。有研究表明,,溫度每升高10 C,,器件的故障率將提高兩倍;另外,,不斷增高的功耗將給芯片的封裝和散熱提出了更高的要求,,這不僅會(huì)增加成本,而且在小型化應(yīng)用場(chǎng)合中,,這種方案往往不被采納,。

  更重要的是,消費(fèi)類(lèi)電子產(chǎn)品的發(fā)展和大量應(yīng)用推動(dòng)了對(duì)功耗問(wèn)題的研究,。

  低功耗的概念是由電子手表等工業(yè)首次提出的,,而在小型化、高集成度的消費(fèi)類(lèi)電子產(chǎn)品中,,為了降低電路成本,、提高電路穩(wěn)定性、可靠性,,更需要設(shè)計(jì)低功耗電路,以保證在集成度提高時(shí),,單位面積維持同樣甚至更低的功耗,。同時(shí),因?yàn)樵谶^(guò)去的三十年中電池的容量?jī)H僅增加了2~4倍,,遠(yuǎn)沒(méi)有VLSI技術(shù)的發(fā)展迅速,,所以在電池供電系統(tǒng)中,集成電路的低功耗設(shè)計(jì)是延長(zhǎng)電池使用壽命的最有效手段,。此外,,便攜式設(shè)備趨于使用更少的電池,以減小尺寸和重量,,也必然要求電路實(shí)現(xiàn)低功耗,。和十年前相比,消費(fèi)類(lèi)電子產(chǎn)品在電子產(chǎn)業(yè)中的比例已從40%快速增長(zhǎng)到55%,,因此可以說(shuō)消費(fèi)類(lèi)電子產(chǎn)品是低功耗設(shè)計(jì)的主要推動(dòng)力,。

  1.2.2數(shù)模混合信號(hào)電路的低功耗研究

  在這種技術(shù)需求和便攜式電子產(chǎn)品的應(yīng)用需求的強(qiáng)烈推動(dòng)下,,CMOS集成電路低壓低功耗設(shè)計(jì)受到了人們的極大重視,。目前,人們對(duì)集成電路的功耗研究,,主要集中在以下兩個(gè)方面:

  一是低功耗工藝的研究,。這主要集中在減小特征尺寸、降低電源電壓和降低閾值電壓方面,。減小特征尺寸,,有助于將復(fù)雜系統(tǒng)集成在同一芯片上,,進(jìn)行有效地功耗管理。但是當(dāng)特征尺寸縮小到一定程度,,熱載流子效應(yīng),、動(dòng)態(tài)節(jié)點(diǎn)的軟失效將極大地影響著器件的性能,降低電源電壓成為解決上述問(wèn)題的較好方案,。為了保證低壓邏輯電路的驅(qū)動(dòng)電流不減少和工作頻率不降低,,在降低電源電壓的同時(shí)也要求降低閾值電壓,但是同比例降低閾值電壓會(huì)使漏泄電流指數(shù)級(jí)增加,。采用多閾值電壓器件或是采用可變閾值電壓技術(shù)有望減小漏泄電流引起的功耗,,而這些技術(shù)都比較依賴(lài)制造工藝。

  二是低功耗設(shè)計(jì)方法的研究,。這是目前低功耗研究中最為活躍的領(lǐng)域,。在工藝確定的情況下,它包括低功耗的設(shè)計(jì)方法及評(píng)估方法,,但主要是針對(duì)數(shù)字電路,。

  在保證系統(tǒng)同樣性能的前提下,在芯片設(shè)計(jì)的初期,,就從各個(gè)層次對(duì)功耗進(jìn)行分析優(yōu)化,,不僅能夠縮短設(shè)計(jì)周期,還能夠?qū)崿F(xiàn)整體功耗最小化目標(biāo),。從設(shè)計(jì)的角度,,低功耗設(shè)計(jì)方法可以分成系統(tǒng)級(jí)(System Level)、算法/結(jié)構(gòu)(Architecture/Algorithm Level),、寄存器傳輸級(jí)(Register Transfer Level,, RTL)、邏輯/門(mén)級(jí)(Logic/Gate Level),、版圖級(jí)(Layout Level)這幾個(gè)層次,。其中,系統(tǒng)及算法作為低功耗技術(shù)中的高層次,,對(duì)系統(tǒng)功耗的影響很大,。在這種層次上的功耗分析將能對(duì)系統(tǒng)功耗進(jìn)行預(yù)測(cè)及優(yōu)化,并能實(shí)現(xiàn)幾個(gè)數(shù)量級(jí)的功耗降低,,因此必須加以重視,。

  有效的功耗評(píng)估工具和方法是低功耗研究的另一個(gè)重要內(nèi)容。如何在設(shè)計(jì)的不同層次對(duì)電路功耗進(jìn)行快速準(zhǔn)確地估計(jì),,也是集成電路設(shè)計(jì)中的一個(gè)熱點(diǎn)和難點(diǎn)問(wèn)題,。通常,把功耗評(píng)估分為基于隨機(jī)統(tǒng)計(jì)和模擬的方法這兩類(lèi),。

  基于隨機(jī)統(tǒng)計(jì)的功耗估算方法,,其基本思想為:先根據(jù)模塊的版圖或邏輯描述,,抽取電路或邏輯模型,然后用隨機(jī)產(chǎn)生的輸入流模擬,,計(jì)算平均功耗,。

  它的優(yōu)點(diǎn)是速度較快,而且不需要電路內(nèi)部信息,,但功耗估算準(zhǔn)確程度不及基于模擬的方法,,因此適用于通常設(shè)計(jì)的早期階段。

  基于模擬的功耗估算方法是用一組典型的輸入矢量進(jìn)行功耗模擬,,以獲得平均功耗,、最大功耗及最小功耗值?;谀M的方法精度高,,但所占存儲(chǔ)空間和模擬時(shí)間較大,因此可以用一些啟發(fā)信息來(lái)加速收斂,,如蒙特卡羅(Monte Carlo)

  模擬方法和遺傳算法,。其中,蒙特卡羅方法是在電路輸入端隨機(jī)產(chǎn)生輸入信號(hào),,再用模擬方法計(jì)算在某一時(shí)間間隔內(nèi)的功耗,。如果將現(xiàn)有的電路級(jí)、門(mén)級(jí)等模擬方法用于蒙特卡羅程序的內(nèi)環(huán),,將能夠?qū)崿F(xiàn)速度和計(jì)算精度的折衷。典型的基于模擬方法的功耗分析軟件有POWERMILL,、Entice-Aspen等,。

  需要指出的是,目前的低功耗研究大多是對(duì)模擬和數(shù)字電路進(jìn)行分開(kāi)討論,。這和模擬電路自身的特點(diǎn)密切相關(guān),。模擬集成電路和處理0或1信號(hào)的數(shù)字電路不同,它主要處理幅度,、時(shí)間,、頻率連續(xù)變化的信號(hào),并且具有以下特點(diǎn):

 ?、匐娐沸问降亩鄻有?。包括數(shù)據(jù)轉(zhuǎn)換器(如A/D轉(zhuǎn)換器、D/A轉(zhuǎn)換器等),、運(yùn)算放大器,、線性放大器(低噪聲放大器、寬帶放大器等),、非線性放大器(模擬乘法器,、對(duì)數(shù)/反對(duì)數(shù)放大器等),、多路模擬開(kāi)關(guān)、電源電壓調(diào)節(jié)器(線性調(diào)壓器,、開(kāi)關(guān)電源控制器等),、智能功率IC以及各類(lèi)專(zhuān)用IC.

  ②性能指標(biāo)的多樣性,。包括精度,、輸入范圍、失真,、噪聲,、電源電壓抑制比(PSRR)、增益,、頻率帶寬,、輸入/出阻抗等。

 ?、垭娐方Y(jié)構(gòu)的多樣性,。僅以一個(gè)運(yùn)放為例,就有兩級(jí),、Cascode,、折疊式(Folded)Cascode、A/AB類(lèi)放大器,、單端/差分放大器等眾多結(jié)構(gòu),。

  ④器件的多樣性,。常見(jiàn)的器件就有晶體管,、二極管、電阻,、電容,、甚至電感等。

  模擬電路處理信號(hào)的連續(xù)性,、電路結(jié)構(gòu)形式的多樣性,、性能指標(biāo)的精確性,都使得電路及版圖的設(shè)計(jì)必須圍繞具體電路展開(kāi),,設(shè)計(jì)的自動(dòng)化程度遠(yuǎn)遠(yuǎn)低于數(shù)字電路,,而難度又遠(yuǎn)高于后者。

  雖然在數(shù)字時(shí)代,,數(shù)字電路的設(shè)計(jì)方法,、工藝條件都領(lǐng)先于模擬電路,數(shù)字IC的市場(chǎng)占有率也要高于模擬IC,但模擬電路畢竟是數(shù)字電路和現(xiàn)實(shí)世界的橋梁,,所以它仍然有足夠的發(fā)展空間,。另外,在實(shí)際的較高復(fù)雜度的系統(tǒng)中,,總是把存儲(chǔ)電路,、邏輯控制電路和模擬電路一起集成在同一芯片中,即所謂的數(shù)?;旌想娐?。CMOS工藝的成熟和在數(shù)字電路中的普遍應(yīng)用,也要求系統(tǒng)中模擬電路工藝要和標(biāo)準(zhǔn)CMOS工藝相容,,因此,,模擬電路中包括功耗在內(nèi)的性能將直接決定著系統(tǒng)的性能。

  在混合信號(hào)電路中,,許多成功應(yīng)用在數(shù)字電路中的低功耗技術(shù),,并不適合應(yīng)用在模擬電路中。例如,,降低電源電壓是減小功耗的有效方法,,但對(duì)于模擬電路,正如文獻(xiàn)[16]所指出,,對(duì)于給定的動(dòng)態(tài)范圍,、增益和增益帶寬乘積,降低電源電壓將反而使功耗升高,,這同時(shí)也說(shuō)明,,在低電壓下實(shí)現(xiàn)低功耗,是以犧牲電路的一部分性能為代價(jià)的,。因?yàn)槟M電路的性能不能脫離具體的電路來(lái)討論,,所以有較多的文獻(xiàn)報(bào)道了低壓低功耗電路設(shè)計(jì)。

  隨著越來(lái)越多的電池供電數(shù)?;旌想娐返某霈F(xiàn),上述傳統(tǒng)的設(shè)計(jì)方法受到了強(qiáng)烈的挑戰(zhàn),。低功耗必然要求對(duì)整個(gè)混合信號(hào)電路進(jìn)行統(tǒng)一的功耗管理,而不是將模擬、數(shù)字電路孤立開(kāi)來(lái),。從設(shè)計(jì)的角度,,如何協(xié)同考慮數(shù)字、模擬電路的功耗,,會(huì)遇到比純數(shù)字電路或純模擬電路更多的困難,。因此,混合信號(hào)的低功耗研究開(kāi)始引起了人們的重視:文獻(xiàn)[17]在設(shè)計(jì)激光驅(qū)動(dòng)器時(shí),,曾利用數(shù)字信號(hào)控制電流開(kāi)關(guān)來(lái)減小功耗,,但采用的是外加數(shù)字信號(hào),;文獻(xiàn)[18]、[19]提出了利用數(shù)字信號(hào)來(lái)控制模擬電路,,但目的是減小電路噪聲而不是功耗,。2001年清華大學(xué)提出了將數(shù)字電路的信號(hào)控制模擬電路的活動(dòng),即所謂的Pulsed-Activation來(lái)節(jié)省系統(tǒng)的功耗[20],,但只是從電路上證明了這種方法的可行性,,對(duì)如何有效地節(jié)省數(shù)模混合系統(tǒng)的功耗,,并沒(méi)有作進(jìn)一步的理論研究,。應(yīng)該看到,研究混合信號(hào)電路的低功耗,,將涉及目前的模擬,、數(shù)字低功耗設(shè)計(jì)的熱點(diǎn)領(lǐng)域,但也有很多問(wèn)題沒(méi)有解決,,值得進(jìn)一步深化和完善,。

  1.3課題研究?jī)?nèi)容以及文章結(jié)構(gòu)

  為了實(shí)現(xiàn)鋰電池管理芯片的保護(hù)功能及低功耗設(shè)計(jì)要求,本文的主要研究?jī)?nèi)容為:數(shù)?;旌想娐分械母鞑糠值牡凸脑O(shè)計(jì)及協(xié)同考慮方法,;鋰離子電池管理芯片的保護(hù)功能設(shè)計(jì)及低功耗實(shí)現(xiàn);電路設(shè)計(jì)和仿真,,版圖實(shí)現(xiàn)以及包括功耗在內(nèi)的后仿真驗(yàn)證,。

  根據(jù)內(nèi)容需要,本文研究的重點(diǎn)集中在以下幾個(gè)方面:

 ?、贁?shù)?;旌想娐分械牡凸姆椒ǚ治觯貉芯康凸牡奈墨I(xiàn)相當(dāng)多,但大多數(shù)是將數(shù)字電路和模擬電路分開(kāi)來(lái)考慮的,。作為一個(gè)實(shí)際的數(shù)?;旌舷到y(tǒng),低功耗設(shè)計(jì)不能脫離系統(tǒng)應(yīng)用的場(chǎng)合,,而且又要有一定的可重用性,,這有一定的難度,也有相當(dāng)?shù)奶魬?zhàn)性,。

 ?、阡囯x子電池管理芯片的保護(hù)功能設(shè)計(jì):針對(duì)鋰離子電池應(yīng)用特點(diǎn),設(shè)計(jì)出能對(duì)電池實(shí)施實(shí)時(shí),、有效保護(hù)的系統(tǒng),。

  ③面向鋰離子電池管理芯片低功耗實(shí)現(xiàn):從應(yīng)用場(chǎng)合出發(fā),研究基于負(fù)載驅(qū)動(dòng)的數(shù)?;旌蠁涡酒到y(tǒng)的功耗優(yōu)化方法,。

  ④版圖實(shí)現(xiàn)與結(jié)果驗(yàn)證:包括版圖設(shè)計(jì)及后模擬驗(yàn)證,。其中,,結(jié)果驗(yàn)證包含兩方面:一是功能的準(zhǔn)確性驗(yàn)證,二是包含功耗在內(nèi)的電學(xué)參數(shù)的精確性驗(yàn)證,,三是系統(tǒng)的可實(shí)現(xiàn)性驗(yàn)證,。

  1.4本文的研究方案及意義

  根據(jù)研究現(xiàn)狀和設(shè)計(jì)要求,本文擬采取的研究方案為:

 ?、倏紤]到混合信號(hào)單芯片系統(tǒng)的要求,,分別研究數(shù)字和模擬電路中的低功耗方法:其中亞閾值電路可以采用標(biāo)準(zhǔn)數(shù)字CMOS工藝,比較適合用在低速低電流消耗場(chǎng)合,,所以將對(duì)亞閾值電路作較深入的理論研究和設(shè)計(jì)分析,,包括失配、噪聲對(duì)功耗優(yōu)化的實(shí)際限制,,設(shè)計(jì)時(shí)電路控制與判斷,,以及對(duì)具體的亞閾值電路結(jié)構(gòu)討論。

 ?、阡囯x子電池管理芯片的保護(hù)功能設(shè)計(jì):包括實(shí)時(shí)的充放電壓檢測(cè)和控制,,即能實(shí)現(xiàn)過(guò)放電保護(hù)、過(guò)充電保護(hù),、零伏充電電壓抑制,;包括實(shí)時(shí)的雙向充放電電流檢測(cè),即能實(shí)現(xiàn)過(guò)流的二級(jí)保護(hù),、短路保護(hù),、以及非正常充電電流保護(hù);另外,,當(dāng)外置熱敏電阻時(shí),,能實(shí)現(xiàn)溫度的檢測(cè)和保護(hù)。

 ?、蹟?shù)?;旌想娐返呢?fù)載驅(qū)動(dòng)型低功耗設(shè)計(jì)方法:分功耗建模、功耗管理策略以及實(shí)現(xiàn)三個(gè)部分討論,。建立適用于管理芯片的功耗模型,對(duì)功耗管理策略分析比較后,,采用實(shí)現(xiàn)簡(jiǎn)單控制容易的方法,,并加以改進(jìn),提出基于負(fù)載的功耗優(yōu)化方案。

 ?、艿凸幕旌想娐返陌鎴D設(shè)計(jì)和性能功耗驗(yàn)證:功能和電學(xué)參數(shù)可以通過(guò)電路級(jí)仿真軟件(如HSPICE,、VERILOG、POWERMILL等)來(lái)直接驗(yàn)證,,并且和相關(guān)文獻(xiàn)的指標(biāo)來(lái)進(jìn)行對(duì)比,;運(yùn)用CADENCE,完成系統(tǒng)版圖,;通過(guò)從版圖提取參數(shù),,并通過(guò)后模擬來(lái)驗(yàn)證系統(tǒng)的可實(shí)現(xiàn)性。

  由上看出,,本文的研究意義至少有以下幾方面:

 ?、贁?shù)模混合電路中的各部分的低功耗理論及協(xié)同考慮方法,,是系統(tǒng)設(shè)計(jì)和功耗優(yōu)化的理論基礎(chǔ),。

  ②低功耗,、高精度,、小型化是當(dāng)今電池管理芯片的發(fā)展趨勢(shì),更是滿(mǎn)足應(yīng)用的必然要求,,研究電池管理芯片的低功耗有重要的實(shí)用價(jià)值,。

  ③采用面向單芯片的混合電路的系統(tǒng)級(jí)動(dòng)態(tài)功耗管理技術(shù),,不僅拓展了動(dòng)態(tài)功耗管理理論在純數(shù)字系統(tǒng)及實(shí)時(shí)嵌入式系統(tǒng)之外的應(yīng)用,,還能結(jié)合應(yīng)用特點(diǎn),克服原有的不足,,發(fā)展新的內(nèi)容,。

  ④本文的研究?jī)?nèi)容和結(jié)果對(duì)于其它電池管理類(lèi)芯片有相當(dāng)?shù)慕梃b作用,。

  1.5文章結(jié)構(gòu)安排

  第一章為緒論,,主要分析論文的研究背景與研究現(xiàn)狀,提出本文的研究?jī)?nèi)容與重點(diǎn),。

  第二章討論低功耗設(shè)計(jì)方法,。首先,根據(jù)數(shù)字電路的功耗模型,,自頂向下討論不同的設(shè)計(jì)層次可以采用的低功耗方法,;其次,討論并推導(dǎo)模擬電路的低功耗限制條件,,包括基本限制條件,,以及失配,、噪聲對(duì)功耗優(yōu)化的實(shí)際限制條件,總結(jié)比較常用的低功耗電路,;最后,,探討現(xiàn)有的混合信號(hào)電路中,低功耗設(shè)計(jì)方法及重點(diǎn),,并提出可行的低功耗拓樸結(jié)構(gòu),,為下一章作理論準(zhǔn)備。

  第三章建立鋰離子電池管理芯片的保護(hù)系統(tǒng)架構(gòu)并進(jìn)行功耗優(yōu)化設(shè)計(jì),。首先,,提出芯片保護(hù)功能要求,建立系統(tǒng)框圖,;然后討論電池管理芯片的低功耗設(shè)計(jì),,在對(duì)系統(tǒng)功耗狀態(tài)建模的基礎(chǔ)上,研究確定基于負(fù)載的系統(tǒng)級(jí)動(dòng)態(tài)功耗管理技術(shù),,優(yōu)化電池管理芯片功耗:并在低功耗電路設(shè)計(jì)中,,對(duì)亞閾值模擬電路作具有指導(dǎo)意義的討論。

  第四章給出具體的電路實(shí)現(xiàn),。分為數(shù)字電路和模擬電路設(shè)計(jì),。數(shù)字電路中,在系統(tǒng)有限狀態(tài)機(jī)的基礎(chǔ)上,,對(duì)邏輯部分進(jìn)行功能設(shè)計(jì),;根據(jù)前章給出的功耗狀態(tài)機(jī)的實(shí)現(xiàn)流程,完成功耗管理邏輯設(shè)計(jì),。模擬電路中,,重點(diǎn)討論基于亞閾值電路的基準(zhǔn)源模塊,具有代表性的過(guò)充電比較器,,以及其它重要的功能電路設(shè)計(jì),。

  第五章給出芯片版圖,通過(guò)將后仿真的結(jié)果與參考文獻(xiàn)比較,,驗(yàn)證功能實(shí)現(xiàn)和功耗優(yōu)化的效果,。

  第六章進(jìn)行總結(jié)并提出展望。


本站內(nèi)容除特別聲明的原創(chuàng)文章之外,,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章,、圖片,、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者,。如涉及作品內(nèi)容,、版權(quán)和其它問(wèn)題,,請(qǐng)及時(shí)通過(guò)電子郵件或電話(huà)通知我們,以便迅速采取適當(dāng)措施,,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話(huà):010-82306118,;郵箱:[email protected],。