如果要提高搭載于移動終端或汽車內(nèi)的鋰離子電池的性能,起火的危險也會隨之提高,。原因是傳統(tǒng)的鋰離子電池使用了易燃的液體作為電解質(zhì),。為此,日本正在推進(jìn)將電解質(zhì)替換成不會燃燒的陶瓷材料等固體的“全固態(tài)蓄電池”的開發(fā)。
“現(xiàn)在智能手機(jī)充滿電需要1小時以上,但新型蓄電池力爭實現(xiàn)1秒內(nèi)滿充電”,東京工業(yè)大學(xué)教授一杉太郎說出了這樣的豪言壯語。一杉教授正嘗試通過提高固體電解質(zhì)和電池正極間的性能,實現(xiàn)前所未有的瞬間充電,。
東京工業(yè)大學(xué)試制的全固態(tài)鋰離子電池
目前的電池充電耗費時間是因為這回使不同固體的氧化物之間接觸不良,電阻增強(qiáng),。一杉認(rèn)為“如果能將不同種的固體在原子層面上連接起來,就能降低電阻”,。他基于這一想法正反復(fù)進(jìn)行試驗,。
一杉使用了備受汽車廠商關(guān)注的“氧化鋰·鎳·錳”作為正極,而用磷酸鋰作為電解質(zhì)。通過應(yīng)用最先進(jìn)的半導(dǎo)體制造技術(shù),在正極表面使電解質(zhì)形成薄膜,從而使固體電解質(zhì)和正極間的阻力降低到了液體電解質(zhì)與正極間的阻力的五分之一至十分之一,。
東京工業(yè)大學(xué)正在與大型半導(dǎo)體相關(guān)企業(yè)共同開發(fā),預(yù)計在一年后試生產(chǎn)可以實際使用的電池,。下一個目標(biāo)是汽車。該大學(xué)將和大型汽車廠商聯(lián)合,將在薄膜上得到實證的低阻力應(yīng)用到塊狀電池上,力爭開發(fā)出可以長時間使用的電池,。
日本科學(xué)技術(shù)振興機(jī)構(gòu)(JST)也在開展使用氧化物電解質(zhì)的全固體蓄電池的開發(fā),。總體負(fù)責(zé)相關(guān)項目的日本物質(zhì)與材料研究機(jī)構(gòu)的負(fù)責(zé)人高田和典謹(jǐn)慎地指出,“盡管薄膜的開發(fā)勢頭很好,但要替換車用的塊狀電池還需要時間”,。盡管如此,一杉教授還是自信地表示,“如果解決了薄膜上的問題,塊狀也同樣適用”,。
長崎大學(xué)開發(fā)的氧化物的固體電解質(zhì) 。通電前(左)和短路后發(fā)黑的狀態(tài)
一方面,參加了日本科學(xué)技術(shù)振興機(jī)構(gòu)項目的長崎大學(xué)的準(zhǔn)教授山田博俊表示正在進(jìn)行提高電流密度,、實現(xiàn)大容量化的研究,。在電解質(zhì)中使用陶瓷材料“氧化鋰·鑭·鋯·鉈”,而在負(fù)極使用金屬鋰。
作為負(fù)極材料,金屬鋰的儲電量最優(yōu),。但是在反復(fù)的充放電中,金屬鋰中會生成一種叫做樹突的樹枝狀結(jié)晶,穿過電解質(zhì)到達(dá)正極,從而引起短路,。
山田準(zhǔn)教授開發(fā)了抑制樹突生成的新技術(shù),并在3月于東京都八王子市召開的學(xué)術(shù)界會議“電氣化學(xué)會”上發(fā)表了這一技術(shù),。
電解質(zhì)通過氧化物的粒子燃燒固化后制成,而樹突是燒結(jié)后在粒子間的縫隙中流通形成的,。對此,山田準(zhǔn)教授等將直徑約2微米的氧化物粒子和低熔點的氫氧化鋰混合燒結(jié),使得厚約0.5微米的氫氧化鋰覆蓋在粒子表面,擠滿間隙。通電實驗的結(jié)果表明,與未覆蓋的粒子相比,短路之前的電流密度可以提高至3倍,。
山田準(zhǔn)教授表示,“將力爭作為可通過太陽能,、風(fēng)力和震動充電的傳感器用電源投入實際使用”,。
全固態(tài)電池的商品化雖然才剛開始,但安全和高性能使其具有巨大的吸引力。除汽車外,未來還有望被應(yīng)用于物聯(lián)網(wǎng)(ioT)用傳感器,遠(yuǎn)程回收自然資源等,。