《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 基于博弈論能耗均衡的無線傳感網(wǎng)絡(luò)路由算法
基于博弈論能耗均衡的無線傳感網(wǎng)絡(luò)路由算法
2017年電子技術(shù)應(yīng)用第7期
朱亞東1,高翠芳2
1.江蘇聯(lián)合職業(yè)技術(shù)學(xué)院 信息中心,江蘇 南京211135;2.江南大學(xué) 理學(xué)院,,江蘇 無錫214112
摘要: 為了平衡能量消耗,延長網(wǎng)絡(luò)壽命,提出基于博弈論能耗均衡的無線傳感網(wǎng)絡(luò)路由算法——EGT-EBGR,。EGT-EBGR路由的目的是使節(jié)點能耗均衡,進(jìn)而延長網(wǎng)絡(luò)壽命,。首先,,將發(fā)送節(jié)點的傳輸范圍劃分幾個轉(zhuǎn)發(fā)子區(qū)域,然后再結(jié)合進(jìn)化博弈論EGT(Evolutionary Game Theory),,從平衡負(fù)載角度,,從轉(zhuǎn)發(fā)子區(qū)域內(nèi)選擇一個轉(zhuǎn)發(fā)子區(qū)域,再利用貪婪算法從此轉(zhuǎn)發(fā)子區(qū)域內(nèi)選擇一個節(jié)點作為下一跳的轉(zhuǎn)發(fā)節(jié)點,。通過進(jìn)化博弈論和貪婪算法GA(Greedy Algorithm)平衡負(fù)載,,縮短傳輸距離,有效地降低地能量消耗速度,,進(jìn)而延長網(wǎng)絡(luò)壽命,。仿真數(shù)據(jù)表明,提出的EGT-EBGR協(xié)議能夠有效地平衡能量消耗,,擴延了網(wǎng)絡(luò)壽命,。
中圖分類號: TN925
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.2017.07.029
中文引用格式: 朱亞東,高翠芳. 基于博弈論能耗均衡的無線傳感網(wǎng)絡(luò)路由算法[J].電子技術(shù)應(yīng)用,,2017,,43(7):114-116,126.
英文引用格式: Zhu Yadong,,Gao Cuifang. Energy-balanced routing algorithm based on Game-Theory for WSNs[J].Application of Electronic Technique,,2017,,43(7):114-116,126.
Energy-balanced routing algorithm based on Game-Theory for WSNs
Zhu Yadong1,,Gao Cuifang2
1.Information Center,,Jiangsu Union Technical Institute,Nanjing 211135,,China,; 2.School of Science,Jiangnan University,,Wuxi 214112,,China
Abstract: To extend the network lifetime by balancing energy consumption, evolutionary game theory-based energy balance geographical routing(EGT-EBGR) protocol is proposed in this paper. The objective of the proposed protocol is to make sensor nodes deplete their energy at approximately the same time. The transmission range of a sender is divided into serval forwarding sub-regions, evolutionary game theory(EGT) is used to balance the traffic load to available sub-regions. Greedy algorithm(GA) is used to select the best node to balance the load in the selected sub-region. This EGT and GA is shown to be an effective solution for load balancing and extending network lifetime. Simulation results show that EGT-EBGR protocol offers significant improvement over existing protocols in extending network lifetime.
Key words : WSNs;routing,;energy balance,;evolutionary game theory;Greedy

0 引言

    提高節(jié)點能量利用率,、擴延網(wǎng)絡(luò)壽命成為無線傳感網(wǎng)絡(luò)(Wireless Sensor Networks,,WSNs)的研究熱點[1]。通過協(xié)調(diào)節(jié)點間通信來平衡網(wǎng)絡(luò)能量消耗,,是提高網(wǎng)絡(luò)壽命最為有效的技術(shù)之一[2-3],。在這些技術(shù)中,路由決策起著重要作用,,因為路徑的選擇直接影響到節(jié)點能量消耗[4-5],。

    由于地理路由協(xié)議(Geographical Routing Protocols,GRPs)無需建立路由表,,也無需進(jìn)行路由發(fā)現(xiàn)和路由維護,,使得GRPs非常適用于無線傳感網(wǎng)絡(luò)。典型的地理路由協(xié)議有GPSR(Greedy Perimeter Stateless Routing)[6],、GOAFR[7],、GRR[8]、GAR[9],、BVGF[10],、GEAR(Geographical and Energy Aware Routing)[11]、OVCR[12],、VAA[13]。地理路由協(xié)議GRPs的不足之處在于它沒有從全局考慮網(wǎng)絡(luò)信息,,對于無線傳感網(wǎng)絡(luò)而言,,能量利用率是非常重要的性能指標(biāo)[14]

    為此,,本文針對地理路由協(xié)議GRPs的特性及其不足,,利用進(jìn)化博弈理論(Evolutionary Game Theory,,EGT),平衡了網(wǎng)絡(luò)能量消耗,。通過EGT建立平衡能量消耗的方案,,進(jìn)而擴延網(wǎng)絡(luò)壽命。此外,,EGT能夠在全局信息未知的環(huán)境下進(jìn)行正確的決策,。

1 EGT-EBGR算法

    EGT-EBGR算法目的是平衡網(wǎng)絡(luò)能量消耗,使得節(jié)點的能量消耗速度相近,。依據(jù)節(jié)點密度,,源節(jié)點S將其傳輸范圍劃分為K個子區(qū)域。首先利用基于EGT的區(qū)域選擇算法(EGT-based Regions Selection,,EGT-RS)選擇下一個轉(zhuǎn)發(fā)子區(qū)域,,然后再利用貪婪地理算法選擇轉(zhuǎn)發(fā)節(jié)點。

    如圖1所示,,源節(jié)點S將它向目的節(jié)點D的傳輸方向的鄰居節(jié)點劃分了4個區(qū)域,,分別為R1、R2,、R3,、R4。然后,,利用EGT-RS算法,,為當(dāng)前數(shù)據(jù)包選擇了一個轉(zhuǎn)發(fā)區(qū)域。假定選擇了R2作為當(dāng)前數(shù)據(jù)包的轉(zhuǎn)發(fā)區(qū)域,,最后,,再在R2區(qū)域,利用貪婪轉(zhuǎn)發(fā)算法選擇離目的節(jié)點D最近的節(jié)點作為轉(zhuǎn)發(fā)節(jié)點,。

tx5-t1.gif

1.1 基于EGT的區(qū)域選擇算法EGT-RS

tx5-1.1-x1.gif

    復(fù)制動態(tài)在每個博弈理論間隔進(jìn)化一個新的數(shù)據(jù)包分布矢量[16],,不斷進(jìn)化,直到得到最優(yōu)的分布矢量X*,。實際上,,計算分布矢量X*的關(guān)鍵在于設(shè)計適度函數(shù)FF(Fitness Function),適度函數(shù)Fk(X)的定義如下:

    tx5-gs1.gif

其中Etr,、Etx分別節(jié)點接收,、發(fā)送一個數(shù)據(jù)包所需的能量。

1.2 復(fù)制動態(tài)

    從子區(qū)域l到子區(qū)域k的切換概率Pk,,l(X),,其與兩個子區(qū)域l、k的適度函數(shù)相關(guān),如式(2)所示,。

tx5-gs2-3.gif

    從子區(qū)域k到其他所有子區(qū)域的轉(zhuǎn)換概率之和應(yīng)等于1:

    tx5-gs4.gif

    因此,,復(fù)制動態(tài)的差異值反映了子區(qū)域k的流入和流出的數(shù)據(jù)包凈差:

     tx5-gs5-6.gif

    因此,對于僅有兩個子區(qū)域的場景,,利用式(2),,可計算過渡概率矩陣P:

 tx5-gs7-8.gif

    當(dāng)所有子區(qū)域的流入和流出數(shù)據(jù)包相等時,系統(tǒng)就到達(dá)穩(wěn)定狀態(tài),。

1.3 進(jìn)化均衡

tx5-gs9-13.gif

2 性能分析

    利用OMNeT++4.22網(wǎng)絡(luò)仿真器建立仿真平臺,,仿真參數(shù)如表1所示。傳感節(jié)點隨機分布于二維的100×100 m2區(qū)域,。

tx5-b1.gif

    提出的EGT-EBGR協(xié)議與3種隨機選擇方案進(jìn)行比較,。這3種隨機選擇方案分別為:(1)隨機+隨機(Random+Random):表示隨機選擇轉(zhuǎn)發(fā)區(qū)域,并且也隨機地選擇轉(zhuǎn)發(fā)節(jié)點,;(2)(EGT-RS+Random):利用EGT-RS算法選擇轉(zhuǎn)發(fā)區(qū)域,,然后再從轉(zhuǎn)發(fā)區(qū)域內(nèi)隨機地選擇轉(zhuǎn)發(fā)節(jié)點;(3)隨機+GA(Random+GA):隨機地選擇轉(zhuǎn)發(fā)區(qū)域,,然后再利用貪婪算法從區(qū)域內(nèi)選擇轉(zhuǎn)發(fā)節(jié)點,。

2.1 網(wǎng)絡(luò)壽命

    本次實驗中,數(shù)據(jù)包產(chǎn)生率為2 packets/s,,節(jié)點數(shù)從120~520變化,,仿真結(jié)果如圖2所示。

tx5-t2.gif

    從圖2可知,,網(wǎng)絡(luò)壽命隨節(jié)點數(shù)的增加呈上升趨勢,。正如預(yù)期的,Random+Random方案的壽命最短,,依次為Random+GA,、EGT-RS+Random,而提出的EGT-EBGR協(xié)議最高,。原因在于EGT-RS+Random方案利用EGT-RS算法選擇轉(zhuǎn)發(fā)區(qū)域,,平衡網(wǎng)絡(luò)能量消耗速度。此外,,從圖1可知,,提出的EGT-EBGR協(xié)議的網(wǎng)絡(luò)壽命比Random+Random、EGT-RS+Random分別提高了近38%,、9%,。

2.2 平均每個數(shù)據(jù)包的能量消耗

    本次實驗分析向目的節(jié)點傳輸一個數(shù)據(jù)包所消耗的平均能量,實驗數(shù)據(jù)如圖3所示,。從圖3可知,,提出的EGT-EBGR的能量消耗比Random+Random下降了約64%,。原因在于:EGT-EBGR協(xié)議中的每個節(jié)點利用納什均衡做出最優(yōu)的轉(zhuǎn)發(fā)決策,從能量均衡角度選擇轉(zhuǎn)發(fā)區(qū)域,,而隨機選擇增加了能量消耗。

tx5-t3.gif

3 結(jié)論

    針對無線網(wǎng)絡(luò)路由問題,,本文提出了基于博弈論能耗均衡的無線傳感網(wǎng)絡(luò)路由算法EGT-EBGR,。EGT-EBGR算法通過平衡網(wǎng)絡(luò)能量消耗,提高網(wǎng)絡(luò)壽命,。EGT-EBGR首先將數(shù)據(jù)包攜帶節(jié)點的傳輸范圍劃分幾個轉(zhuǎn)發(fā)子區(qū)域,,然后再利用進(jìn)化博弈算法,從中選擇一個子區(qū)域作為轉(zhuǎn)發(fā)區(qū)域,,再從選擇的子區(qū)域內(nèi),,利用貪婪算法選出下一跳轉(zhuǎn)發(fā)節(jié)點。仿真結(jié)果表明,,提出的EGT-EBGR協(xié)議的網(wǎng)絡(luò)壽命比隨機選擇下一跳轉(zhuǎn)發(fā)節(jié)點(Random+Random)高了近38%,,能量消耗下降了64%。

參考文獻(xiàn)

[1] ZHANG H,,SHEN H.Balancing energy consumption to maximize network lifetime in data-gathering sensor networks[J].IEEE Trans.Parallel Distrib.Syst.,,2009,20(10):1526-1539.

[2] 羅四維,,侯孟書,,周益民.一種新的基于能量消耗速率模型的分簇路由協(xié)議[J].計算機科學(xué),2012,,39(6):46-50.

[3] IYER G,,AGRAWAL P,MONNERIE E,,et al.Performance analysis of wireless mesh routing protocols for smart utility networks[C].In Proc.IEEE Int.Conf.Smart Grid Commun.,,Oct.2011:114-119.

[4] PANTAZIS N A,NIKOLIDAKIS S A,,VERGADOS D D.Energy-efficient routing protocols in wireless sensor networks:A survey[J].IEEE Commun.Surv.Tuts.,,2013,15(2):551-591.

[5] ZHANG D,,LI G,,ZHENG K,et al.An energy balanced routing method based on forward-aware factor for wireless sensor networks[J].IEEE Trans.Ind.Informat.,,2014,,10(1):766-773.

[6] SEADA K,HELMY A,,GOVINDAN R.On the effect of localization errors on geographic face routing in sensor networks[C].In:Proc.of the 3rd International Symposium on Information Processing in Sensor Networks,,IPSN’04,,2004:71-80.

[7] KUHN F,WATTENHOFER R,,ZHANG Y,,et al.Geometric ad-hoc routing:of theory and practice[C].Proc.of the Twenty-Second Annual Symposiumon Principles of Distributed Computing,PODC’03,,2003:63-72.

[8] KERMARREC A M,,TAN G.Greedy geographic routing in large-scale sensor networks:a minimum network decomposition approach[C].Proc.of the Eleventh ACM International Symposium on Mobile Ad Hoc Networking and Computing,MobiHoc’10,,2010:161-170.

[9] LIU W J,,F(xiàn)ENG K T.Greedy routing with anti-void traversal for wireless sensor networks[J].IEEE Trans.Mob.Comput.,2009,,8(7):910-922.

[10] Xing Guoliang,,Lu Chenyang,PLESS R,,et al.Impact of sensing coverage on Greedy geographic routing algorithms[J].IEEE Trans.Parallel Distrib.Syst.2006,,17(4):348-360.

[11] YU Y,GOVINDAN R,,ESTRIN D.Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks[J].Technical Report CSD-TR-01-0023,,UCLA Computer Science Department,2011,,3(6):36-42.

[12] HSU M T,,LIN F Y S,CHANG Y S,,et al.Reliable Greedy forwarding in obstacle-aware wireless sensor networks[J].Proc.of the 9th International Conference on Algorithms and Architectures for Parallel Processing,,ICA3PP’09,2009:797-808.

[13] JOSHI G P,,KIM S W.A distributed geo-routing algorithm for wireless sensor networks[J].Sensors,,2009,9(6):4083-4103.

[14] TEMBINE H,,ALTMAN E,,EL-AZOUZI R,et al.Evolutionary games in wireless networks[J].IEEE Trans.Syst.,,Man,,Cybern.B,Cybern.,,2010,,40(3):634-646.

[15] ABD M A,SINGH B K,,AL RUBEAAI S F,,et al.Game theoretic energy balanced(GTEB) routing protocol for wireless sensor networks[C].In Proc.IEEE Wireless Commun.Netw.Conf.(WCNC),,2014:2564-2569.

[16] MEHMMOD A,SARAB F.Extending wireless sensor network lifetime with global energy balance[J].IEEE Sensors Journal,,2015,,15(9):5053-5064.

[17] BROUWER L E J.Uber abbildung von mannigfaltigkeiten[J].Math.Ann.,2012,,71(4):32-43.



作者信息:

朱亞東1,,高翠芳2

(1.江蘇聯(lián)合職業(yè)技術(shù)學(xué)院 信息中心,江蘇 南京211135,;2.江南大學(xué) 理學(xué)院,江蘇 無錫214112)

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。