現(xiàn)在的社會的發(fā)展,越來越多的電器設備,,就需要很多的電源,,首先從開關(guān)電源的設計及生產(chǎn)工藝開始描述吧,先說說印制板的設計,。開關(guān)電源工作在高頻率,,高脈沖狀態(tài),屬于模擬電路中的一個比較特殊種類,。布板時須遵循高頻電路布線原則,。
布局:脈沖電壓連線盡可能短,其中輸入開關(guān)管到變壓器連線,,輸出變壓器到整流管連接線,。脈沖電流環(huán)路盡可能小如輸入濾波電容正到變壓器到開關(guān)管返回電容負。輸出部分變壓器出端到整流管到輸出電感到輸出電容返回變壓器電路中 X 電容要盡量接近開關(guān)電源輸入端,,輸入線應避免與其他電路平行,,應避開。Y 電容應放置在機殼接地端子或 FG 連接端,。共摸電感應與變壓器保持一定距離,,以避免磁偶合,。如不好處理可在共摸電感與變壓器間加一屏蔽,以上幾項對開關(guān)電源的 EMC 性能影響較大,。
輸出電容一般可采用兩只一只靠近整流管另一只應靠近輸出端子,,可影響電源輸出紋波指標,兩只小容量電容并聯(lián)效果應優(yōu)于用一只大容量電容,。發(fā)熱器件要和電解電容保持一定距離,,以延長整機壽命,電解電容是開關(guān)電源壽命的瓶勁,,如變壓器,、功率管、大功率電阻要和電解保持距離,,電解之間也須留出散熱空間,,條件允許可將其放置在進風口。
控制部分要注意:高阻抗弱信號電路連線要盡量短如取樣反饋環(huán)路,,在處理時要盡量避免其受干擾,、電流取樣信號電路,特別是電流控制型電路,,處理不好易出現(xiàn)一些想不到的意外,,其中有一些技巧,現(xiàn)以 3843 電路舉例見圖(1)圖一效果要好于圖二,,圖二在滿載時用示波器觀測電流波形上明顯疊加尖刺,,由于干擾限流點比設計值偏低,圖一則沒有這種現(xiàn)象,、還有開關(guān)管驅(qū)動信號電路,開關(guān)管驅(qū)動電阻要靠近開關(guān)管,,可提高開關(guān)管工作可靠性,,這和功率 MOSFET 高直流阻抗電壓驅(qū)動特性有關(guān)。
下面談一談印制板布線的一些原則,。
線間距:隨著印制線路板制造工藝的不斷完善和提高,,一般加工廠制造出線間距等于甚至小于 0.1mm 已經(jīng)不存在什么問題,完全能夠滿足大多數(shù)應用場合,??紤]到開關(guān)電源所采用的元器件及生產(chǎn)工藝,一般雙面板最小線間距設為 0.3mm,,單面板最小線間距設為 0.5mm,,焊盤與焊盤、焊盤與過孔或過孔與過孔,,最小間距設為 0.5mm,,可避免在焊接操作過程中出現(xiàn)“橋接”現(xiàn)象。這樣大多數(shù)制板廠都能夠很輕松滿足生產(chǎn)要求,并可以把成品率控制得非常高,,亦可實現(xiàn)合理的布線密度及有一個較經(jīng)濟的成本,。
最小線間距只適合信號控制電路和電壓低于 63V 的低壓電路,當線間電壓大于該值時一般可按照 500V/1mm 經(jīng)驗值取線間距,。
鑒于有一些相關(guān)標準對線間距有較明確的規(guī)定,,則要嚴格按照標準執(zhí)行,如交流入口端至熔斷器端連線,。某些電源對體積要求很高,,如模塊電源。一般變壓器輸入側(cè)線間距為 1mm 實踐證明是可行的,。對交流輸入,,(隔離)直流輸出的電源產(chǎn)品,比較嚴格的規(guī)定為安全間距要大于等于 6mm,,當然這由相關(guān)的標準及執(zhí)行方法確定,。一般安全間距可由反饋光耦兩側(cè)距離作為參考,原則大于等于這個距離,。也可在光耦下面印制板上開槽,,使爬電距離加大以滿足絕緣要求。一般開關(guān)電源交流輸入側(cè)走線或板上元件距非絕緣的外殼,、散熱器間距要大于 5mm,,輸出側(cè)走線或器件距外殼或散熱器間距要大于 2mm,或嚴格按照安全規(guī)范執(zhí)行,。
常用方法:上文提到的線路板開槽的方法適用于一些間距不夠的場合,,順便提一下,該法也常用來作為保護放電間隙,,常見于電視機顯象管尾板和電源交流輸入處,。該法在模塊電源中得到了廣泛的應用,在灌封的條件下可獲得很好的效果,。
方法二:墊絕緣紙,,可采用青殼紙、聚脂膜,、聚四氟乙烯定向膜等絕緣材料,。一般通用電源用青殼紙或聚脂膜墊在線路板于金屬機殼間,這種材料有機械強度高,,有有一定抗潮濕的能力,。聚四氟乙烯定向膜由于具有耐高溫的特性在模塊電源中得到廣泛的應用。在元件和周圍導體間也可墊絕緣薄膜來提高絕緣抗電性能,。
注意:某些器件絕緣被覆套不能用來作為絕緣介質(zhì)而減小安全間距,,如電解電容的外皮,,在高溫條件下,該外皮有可能受熱收縮,。大電解防爆槽前端要留出空間,,以確保電解電容在非常情況時能無阻礙地瀉壓。
印制板銅皮走線的一些事項:
走線電流密度:現(xiàn)在多數(shù)電子線路采用絕緣板縛銅構(gòu)成,。常用線路板銅皮厚度為 35μm,,走線可按照 1A/mm 經(jīng)驗值取電流密度值,具體計算可參見教科書,。為保證走線機械強度原則線寬應大于或等于 0.3mm(其他非電源線路板可能最小線寬會小一些),。銅皮厚度為 70μm 線路板也常見于開關(guān)電源,那么電流密度可更高些,。
補充一點,,現(xiàn)常用線路板設計工具軟件一般都有設計規(guī)范項,如線寬,、線間距,,旱盤過孔尺寸等參數(shù)都可以進行設定。在設計線路板時,,設計軟件可自動按照規(guī)范執(zhí)行,,可節(jié)省許多時間,減少部分工作量,,降低出錯率,。一般對可靠性要求比較高的線路或布線線密度大可采用雙面板。其特點是成本適中,,可靠性高,,能滿足大多數(shù)應用場合。
模塊電源行列也有部分產(chǎn)品采用多層板,,主要便于集成變壓器電感等功率器件,,優(yōu)化接線、功率管散熱等,。具有工藝美觀一致性好,變壓器散熱好的優(yōu)點,,但其缺點是成本較高,,靈活性較差,僅適合于工業(yè)化大規(guī)模生產(chǎn),。單面板,,市場流通通用開關(guān)電源幾乎都采用了單面線路板,其具有低成本的優(yōu)勢,,在設計,,及生產(chǎn)工藝上采取一些措施亦可確保其性能,。
單面印制板設計的一些體會,由于單面板具有成本低廉,,易于制造的特點,,在開關(guān)電源線路中得到廣泛應用,由于其只有一面縛銅,,器件的電器連接,,機械固定都要依靠那層銅皮,在處理時必須小心,。
為保證良好的焊接機械結(jié)構(gòu)性能,,單面板焊盤應稍微大一些,以確保銅皮和基板的良好縛著力,,而不至于受到震動時銅皮剝離,、斷脫。一般焊環(huán)寬度應大于 0.3mm,。焊盤孔直徑應略大于器件引腳直徑,,但不宜過大,保證管腳與焊盤間由焊錫連接距離最短,,盤孔大小以不妨礙正常查件為度,,焊盤孔直徑一般大于管腳直徑 0.1-0.2mm。多引腳器件為保證順利查件,,也可更大一些,。
電氣連線應盡量寬,原則寬度應大于焊盤直徑,,特殊情況應在連線于與焊盤交匯必須將線加寬(俗稱生成淚滴),,避免在某些條件線與焊盤斷裂。原則最小線寬應大于 0.5mm,。
單面板上元器件應緊貼線路板,。需要架空散熱的器件,要在器件與線路板之間的管腳上加套管,,可起到支撐器件和增加絕緣的雙重作用,,要最大限度減少或避免外力沖擊對焊盤與管腳連接處造成的影響,增強焊接的牢固性,。線路板上重量較大的部件可增加支撐連接點,,可加強與線路板間連接強度,如變壓器,,功率器件散熱器,。
單面板焊接面引腳在不影響與外殼間距的前題條件下,可留得長一些,,其優(yōu)點是可增加焊接部位的強度,,加大焊接面積,、有虛焊現(xiàn)象可即時發(fā)現(xiàn)。引腳長剪腿時,,焊接部位受力較小,。在臺灣、日本常采用把器件引腳在焊接面彎成與線路板成 45 度角,,然后再焊接的工藝,,的其道理同上。今天談一談雙面板設計中的一些事項,,在一些要求比較高,,或走線密度比較大的應用環(huán)境中采用雙面印制板,其性能及各方面指標要比單面板好很多,。
雙面板焊盤由于孔已作金屬化處理強度較高,,焊環(huán)可比單面板小一些,焊盤孔孔徑可比管腳直徑略微大一些,,因為在焊接過程中有利于焊錫溶液通過焊孔滲透到頂層焊盤,,以增加焊接可靠性。但是有一個弊端,,如果孔過大,,波峰焊時在射流錫沖擊下部分器件可能上浮,產(chǎn)生一些缺陷,。
大電流走線的處理,,線寬可按照前帖處理,如寬度不夠,,一般可采用在走線上鍍錫增加厚度進行解決,,其方法有好多種
1,將走線設置成焊盤屬性,,這樣在線路板制造時該走線不會被阻焊劑覆蓋,,熱風整平時會被鍍上錫。
2,,在布線處放置焊盤,,將該焊盤設置成需要走線的形狀,要注意把焊盤孔設置為零,。
3,,在阻焊層放置線,此方法最靈活,,但不是所有線路板生產(chǎn)商都會明白你的意圖,,需用文字說明,。在阻焊層放置線的部位會不涂阻焊劑,。
線路鍍錫的幾種方法如上,,要注意的是,如果很寬的的走線全部鍍上錫,,在焊接以后,,會粘接大量焊錫,并且分布很不均勻,,影響美觀,。一般可采用細長條鍍錫寬度在 1~1.5mm,長度可根據(jù)線路來確定,,鍍錫部分間隔 0.5~1mm 雙面線路板為布局,、走線提供了很大的選擇性,可使布線更趨于合理,。關(guān)于接地,,功率地與信號地一定要分開,兩個地可在濾波電容處匯合,,以避免大脈沖電流通過信號地連線而導致出現(xiàn)不穩(wěn)定的意外因素,,信號控制回路盡量采用一點接地法,有一個技巧,,盡量把非接地的走線放置在同一布線層,,最后在另外一層鋪地線。輸出線一般先經(jīng)過濾波電容處,,再到負載,,輸入線也必須先通過電容,再到變壓器,,理論依據(jù)是讓紋波電流都通過旅濾波電容,。
電壓反饋取樣,為避免大電流通過走線的影響,,反饋電壓的取樣點一定要放在電源輸出最末梢,,以提高整機負載效應指標。走線從一個布線層變到另外一個布線層一般用過孔連通,,不宜通過器件管腳焊盤實現(xiàn),,因為在插裝器件時有可能破壞這種連接關(guān)系,還有在每 1A 電流通過時,,至少應有 2 個過孔,,過孔孔徑原則要大于 0.5mm,一般 0.8mm 可確保加工可靠性,。
器件散熱,,在一些小功率電源中,線路板走線也可兼散熱功能,,其特點是走線盡量寬大,,以增加散熱面積,,并不涂阻焊劑,有條件可均勻放置過孔,,增強導熱性能,。基板在開關(guān)電源中的應用和多層印制板在開關(guān)電源電路中的應用,。鋁基板由其本身構(gòu)造,,具有以下特點:導熱性能非常優(yōu)良、單面縛銅,、器件只能放置在縛銅面,、不能開電器連線孔所以不能按照單面板那樣放置跳線。
鋁基板上一般都放置貼片器件,,開關(guān)管,,輸出整流管通過基板把熱量傳導出去,熱阻很低,,可取得較高可靠性,。變壓器采用平面貼片結(jié)構(gòu),也可通過基板散熱,,其溫升比常規(guī)要低,,同樣規(guī)格變壓器采用鋁基板結(jié)構(gòu)可得到較大的輸出功率。鋁基板跳線可以采用搭橋的方式處理,。鋁基板電源一般由由兩塊印制板組成,,另外一塊板放置控制電路,兩塊板之間通過物理連接合成一體,。
由于鋁基板優(yōu)良的導熱性,,在小量手工焊接時比較困難,焊料冷卻過快,,容易出現(xiàn)問題現(xiàn)有一個簡單實用的方法,,將一個燙衣服的普通電熨斗(最好有調(diào)溫功能),翻過來,,熨燙面向上,,固定好,溫度調(diào)到 150℃左右,,把鋁基板放在熨斗上面,,加溫一段時間,然后按照常規(guī)方法將元件貼上并焊接,,熨斗溫度以器件易于焊接為宜,,太高有可能時器件損壞,甚至鋁基板銅皮剝離,溫度太低焊接效果不好,,要靈活掌握,。
最近幾年,隨著多層線路板在開關(guān)電源電路中應用,,使得印制線路變壓器成為可能,由于多層板,,層間距較小,,也可以充分利用變壓器窗口截面,可在主線路板上再加一到兩片由多層板組成的印制線圈達到利用窗口,,降低線路電流密度的目的,,由于采用印制線圈,減少了人工干預,,變壓器一致性好,,平面結(jié)構(gòu),漏感低,,偶合好,。開啟式磁芯,良好的散熱條件,。由于其具有諸多的優(yōu)勢,,有利于大批量生產(chǎn),所以得到廣泛的應用,。但研制開發(fā)初期投入較大,,不適合小規(guī)模生。
開關(guān)電源分為,,隔離與非隔離兩種形式,,在這里主要談一談隔離式開關(guān)電源的拓撲形式,在下文中,,非特別說明,,均指隔離電源。隔離電源按照結(jié)構(gòu)形式不同,,可分為兩大類:正激式和反激式,。反激式指在變壓器原邊導通時副邊截止,變壓器儲能,。原邊截止時,,副邊導通,能量釋放到負載的工作狀態(tài),,一般常規(guī)反激式電源單管多,,雙管的不常見。正激式指在變壓器原邊導通同時副邊感應出對應電壓輸出到負載,能量通過變壓器直接傳遞,。按規(guī)格又可分為常規(guī)正激,,包括單管正激,雙管正激,。半橋,、橋式電路都屬于正激電路。
正激和反激電路各有其特點,,在設計電路的過程中為達到最優(yōu)性價比,,可以靈活運用。一般在小功率場合可選用反激式,。稍微大一些可采用單管正激電路,,中等功率可采用雙管正激電路或半橋電路,低電壓時采用推挽電路,,與半橋工作狀態(tài)相同,。大功率輸出,一般采用橋式電路,,低壓也可采用推挽電路,。
反激式電源因其結(jié)構(gòu)簡單,省掉了一個和變壓器體積大小差不多的電感,,而在中小功率電源中得到廣泛的應用,。在有些介紹中講到反激式電源功率只能做到幾十瓦,輸出功率超過 100 瓦就沒有優(yōu)勢,,實現(xiàn)起來有難度,。本人認為一般情況下是這樣的,但也不能一概而論,,PI 公司的 TOP 芯片就可做到 300 瓦,,有文章介紹反激電源可做到上千瓦,但沒見過實物,。輸出功率大小與輸出電壓高低有關(guān),。
反激電源變壓器漏感是一個非常關(guān)鍵的參數(shù),由于反激電源需要變壓器儲存能量,,要使變壓器鐵芯得到充分利用,,一般都要在磁路中開氣隙,其目的是改變鐵芯磁滯回線的斜率,,使變壓器能夠承受大的脈沖電流沖擊,,而不至于鐵芯進入飽和非線形狀態(tài),磁路中氣隙處于高磁阻狀態(tài),,在磁路中產(chǎn)生漏磁遠大于完全閉合磁路,。
變壓器初次極間的偶合,,也是確定漏感的關(guān)鍵因素,要盡量使初次極線圈靠近,,可采用三明治繞法,,但這樣會使變壓器分布電容增大。選用鐵芯盡量用窗口比較長的磁芯,,可減小漏感,,如用 EE、EF,、EER,、PQ 型磁芯效果要比 EI 型的好。
關(guān)于反激電源的占空比,,原則上反激電源的最大占空比應該小于 0.5,否則環(huán)路不容易補償,,有可能不穩(wěn)定,,但有一些例外,如美國 PI 公司推出的 TOP 系列芯片是可以工作在占空比大于 0.5 的條件下,。占空比由變壓器原副邊匝數(shù)比確定,,本人對做反激的看法是,先確定反射電壓(輸出電壓通過變壓器耦合反映到原邊的電壓值),,在一定電壓范圍內(nèi)反射電壓提高則工作占空比增大,,開關(guān)管損耗降低。反射電壓降低則工作占空比減小,,開關(guān)管損耗增大,。當然這也是有前提條件,當占空比增大,,則意味著輸出二極管導通時間縮短,,為保持輸出穩(wěn)定,更多的時候?qū)⒂奢敵鲭娙莘烹婋娏鱽肀WC,,輸出電容將承受更大的高頻紋波電流沖刷,,而使其發(fā)熱加劇,這在許多條件下是不允許的,。占空比增大,,改變變壓器匝數(shù)比,會使變壓器漏感加大,,使其整體性能變,,當漏感能量大到一定程度,可充分抵消掉開關(guān)管大占空帶來的低損耗,,時就沒有再增大占空比的意義了,,甚至可能會因為漏感反峰值電壓過高而擊穿開關(guān)管,。由于漏感大,可能使輸出紋波,,及其他一些電磁指標變差,。當占空比小時,開關(guān)管通過電流有效值高,,變壓器初級電流有效值大,,降低變換器效率,但可改善輸出電容的工作條件,,降低發(fā)熱,。
如何確定變壓器反射電壓(即占空比)
占空比還與選擇開關(guān)管的耐壓有關(guān),有一些早期的反激電源使用比較低耐壓開關(guān)管,,如 600V 或 650V 作為交流 220V 輸入電源的開關(guān)管,,也許與當時生產(chǎn)工藝有關(guān),高耐壓管子,,不易制造,,或者低耐壓管子有更合理的導通損耗及開關(guān)特性,像這種線路反射電壓不能太高,,否則為使開關(guān)管工作在安全范圍內(nèi),,吸收電路損耗的功率也是相當可觀的。實踐證明 600V 管子反射電壓不要大于 100V,,650V 管子反射電壓不要大于 120V,,把漏感尖峰電壓值鉗位在 50V 時管子還有 50V 的工作余量。現(xiàn)在由于 MOS 管制造工藝水平的提高,,一般反激電源都采用 700V 或 750V 甚至 800-900V 的開關(guān)管,。像這種電路,抗過壓的能力強一些開關(guān)變壓器反射電壓也可以做得比較高一些,,最大反射電壓在 150V 比較合適,,能夠獲得較好的綜合性能。PI 公司的 TOP 芯片推薦為 135V 采用瞬變電壓抑制二極管鉗位,。但他的評估板一般反射電壓都要低于這個數(shù)值在 110V 左右,。這兩種類型各有優(yōu)缺點:
第一類:缺點抗過壓能力弱,占空比小,,變壓器初級脈沖電流大,。優(yōu)點:變壓器漏感小,電磁輻射低,,紋波指標高,,開關(guān)管損耗小,轉(zhuǎn)換效率不一定比第二類低,。第二類:缺點開關(guān)管損耗大一些,,變壓器漏感大一些,,紋波差一些。優(yōu)點:抗過壓能力強一些,,占空比大,,變壓器損耗低一些,效率高一些,。
反激電源反射電壓還有一個確定因素
反激電源的反射電壓還與一個參數(shù)有關(guān),,那就是輸出電壓,輸出電壓越低則變壓器匝數(shù)比越大,,變壓器漏感越大,,開關(guān)管承受電壓越高,有可能擊穿開關(guān)管,、吸收電路消耗功率越大,,有可能使吸收回路功率器件永久失效(特別是采用瞬變電壓抑制二極管的電路)。在設計低壓輸出小功率反激電源的優(yōu)化過程中必須小心處理,,其處理方法有幾個:
1,、采用大一個功率等級的磁芯降低漏感,這樣可提高低壓反激電源的轉(zhuǎn)換效率,,降低損耗,,減小輸出紋波,,提高多路輸出電源的交差調(diào)整率,,一般常見于家電用開關(guān)電源,如光碟機,、DVB 機頂盒等,。
2、如果條件不允許加大磁芯,,只能降低反射電壓,,減小占空比。降低反射電壓可減小漏感但有可能使電源轉(zhuǎn)換效率降低,,這兩者是一個矛盾,,必須要有一個替代過程才能找到一個合適的點,在變壓器替代實驗過程中,,可以檢測變壓器原邊的反峰電壓,,盡量降低反峰電壓脈沖的寬度,和幅度,,可增加變換器的工作安全裕度,。一般反射電壓在 110V 時比較合適。
3,、增強耦合,,降低損耗,,采用新的技術(shù),和繞線工藝,,變壓器為滿足安全規(guī)范會在原邊和副邊間采取絕緣措施,,如墊絕緣膠帶、加絕緣端空膠帶,。這些將影響變壓器漏感性能,,現(xiàn)實生產(chǎn)中可采用初級繞組包繞次級的繞法?;蛘叽渭売萌亟^緣線繞制,,取消初次級間的絕緣物,可以增強耦合,,甚至可采用寬銅皮繞制,。
文中低壓輸出指小于或等于 5V 的輸出,像這一類小功率電源,,本人的經(jīng)驗是,,功率輸出大于 20W 輸出可采用正激式,可獲得最佳性價比,,當然這也不是決對的,,與個人的習慣,應用的環(huán)境有關(guān)系,。
反激電源變壓器磁芯在工作在單向磁化狀態(tài),,所以磁路需要開氣隙,類似于脈動直流電感器,。部分磁路通過空氣縫隙耦合,。為什么開氣隙的原理本人理解為:由于功率鐵氧體也具有近似于矩形的工作特性曲線(磁滯回線),在工作特性曲線上 Y 軸表示磁感應強度(B),,現(xiàn)在的生產(chǎn)工藝一般飽和點在 400mT 以上,,一般此值在設計中取值應該在 200-300mT 比較合適、X 軸表示磁場強度(H)此值與磁化電流強度成比例關(guān)系,。磁路開氣隙相當于把磁體磁滯回線向 X 軸向傾斜,,在同樣的磁感應強度下,可承受更大的磁化電流,,則相當于磁心儲存更多的能量,,此能量在開關(guān)管截止時通過變壓器次級瀉放到負載電路,反激電源磁芯開氣隙有兩個作用,。其一是傳遞更多能量,,其二防止磁芯進入飽和狀態(tài)。
反激電源的變壓器工作在單向磁化狀態(tài),,不僅要通過磁耦合傳遞能量,,還擔負電壓變換輸入輸出隔離的多重作用,。所以氣隙的處理需要非常小心,氣隙太大可使漏感變大,,磁滯損耗增加,,鐵損、銅損增大,,影響電源的整機性能,。氣隙太小有可能使變壓器磁芯飽和,導致電源損壞,。
所謂反激電源的連續(xù)與斷續(xù)模式是指變壓器的工作狀態(tài),,在滿載狀態(tài)變壓器工作于能量完全傳遞,或不完全傳遞的工作模式,。一般要根據(jù)工作環(huán)境進行設計,,常規(guī)反激電源應該工作在連續(xù)模式,這樣開關(guān)管,、線路的損耗都比較小,,而且可以減輕輸入輸出電容的工作應力,但是這也有一些例外,。需要在這里特別指出:由于反激電源的特點也比較適合設計成高壓電源,,而高壓電源變壓器一般工作在斷續(xù)模式,本人理解為由于高壓電源輸出需要采用高耐壓的整流二極管,。由于制造工藝特點,,高反壓二極管,反向恢復時間長,,速度低,,在電流連續(xù)狀態(tài),,二極管是在有正向偏壓時恢復,,反向恢復時的能量損耗非常大,不利于變換器性能的提高,,輕則降低轉(zhuǎn)換效率,,整流管嚴重發(fā)熱,重則甚至燒毀整流管,。
由于在斷續(xù)模式下,,二極管是在零偏壓情況下反向偏置,損耗可以降到一個比較低的水平,。所以高壓電源工作在斷續(xù)模式,,并且工作頻率不能太高。還有一類反激式電源工作在臨界狀態(tài),,一般這類電源工作在調(diào)頻模式,,或調(diào)頻調(diào)寬雙模式,,一些低成本的自激電源(RCC)常采用這種形式,為保證輸出穩(wěn)定,,變壓器工作頻率隨著,,輸出電流或輸入電壓而改變,接近滿載時變壓器始終保持在連續(xù)與斷續(xù)之間,,這種電源只適合于小功率輸出,,否則電磁兼容特性的處理會很讓人頭痛。
反激開關(guān)電源變壓器應工作在連續(xù)模式,,那就要求比較大的繞組電感量,,當然連續(xù)也是有一定程度的,過分追求絕對連續(xù)是不現(xiàn)實的,,有可能需要很大的磁芯,,非常多的線圈匝數(shù),同時伴隨著大的漏感和分布電容,,可能得不償失,。
那么如何確定這個參數(shù)呢,通過多次實踐,,及分析同行的設計,,本人認為,在標稱電壓輸入時,,輸出達到 50%~60%變壓器從斷續(xù),,過渡到連續(xù)狀態(tài)比較合適,。或者在最高輸入電壓狀態(tài)時,滿載輸出時,,變壓器能夠過渡到連續(xù)狀態(tài)就可以了。這就需要研究人員更多的實踐,,未來的電源產(chǎn)品會越來越好,。