中圖分類號: TP399 文獻標識碼: A DOI:10.16157/j.issn.0258-7998.200960 中文引用格式: 牟俊杰,,姚剛,,孫濤. 基于CNN-LSTM神經網絡的聲紋識別系統(tǒng)設計[J].電子技術應用,2021,,47(3):75-78. 英文引用格式: Mu Junjie,,Yao Gang,Sun Tao. Design of vocieprint recognition system based on CNN-LSTM neural network[J]. Application of Electronic Technique,,2021,,47(3):75-78.
Design of vocieprint recognition system based on CNN-LSTM neural network
Abstract: For warning of cardiovascular disease,in order to early detect the change of heart and lung voice representing the signs of danger,the vocieprint recognition system based on CNN-LSTM is designed. Using the Internet of Things technology coalescing the heart rate sensor chip, single-chip computer, electronic stethoscope, such as equipments,it can monitor the heart rate in real-time, early warn.And the cardiopulmonary sound recognition model based on the CNN-LSTM algorithm is trained, results show that the loss value is 0.082, accuracy rate of 0.908. The system is forward-looking and has a complete structural framework, which can effectively avoid the waste of medical resources, preposite the countermeasures for cardiovascular diseases.It has a broad application prospect in the market, and plays a significant role in promoting smart medical treatment.
Key words : CNN,;LSTM,;features extraction;MFCC,;cardiovascular disease,;vocieprint recognition
在人口老齡化日益嚴重的當下,心血管疾病不斷威脅老年人健康,,引發(fā)社會廣泛關注,。由于醫(yī)療知識欠缺、行動不便等原因,,部分老年人就醫(yī)不及時,,錯過了搶救的黃金時間,留下永遠的遺憾,。開發(fā)心血管疾病方面的智能預警系統(tǒng),,滿足龐大的老年人群體需求迫在眉睫[3]。在醫(yī)療實踐中,,對心血管疾病的診斷常常以心率,、心肺音數(shù)據(jù)為重要支撐,國內外以DSP[4],、長短時記憶(Long Short Time Memory,,LSTM)[5]、卷積神經網絡[6](Convolutional Neural Network,,CNN)等方法算法為手段對心血管疾病的信號診斷進行了相當多的分析,,但基本均停留在理論層面,,距離軟硬件結合的實際應用尚有差距。各種醫(yī)療設備的聚焦點主要是信號的準確采集,、分離[7-8],,基于醫(yī)療倫理等原因,對智能診斷設備的研制尚處于知識儲備期,,有巨大的空白亟需填補,。本文設計了基于CNN-LSTM的心血管疾病預警系統(tǒng),利用物聯(lián)網技術采集心率和心肺音等健康指標數(shù)據(jù),,對老人的健康狀況進行實時監(jiān)測,、預警,采用基于CNN-LSTM模型的智能算法對心肺音信號進行智能分析預警,。系統(tǒng)著重考慮了適用性,、穩(wěn)定性和成本,具有較高的實用價值和完整的結構框架,,是利用智慧醫(yī)療從應用層面解決心血管疾病問題的一次重要探索,。