緣起
輸入幾個(gè)簡單的關(guān)鍵詞,,AI能幫你生成一篇短篇小說甚至是專業(yè)論文,。作為上知天文下知地理對(duì)話語言模型,最近大火的ChatGPT在郵件撰寫,、視頻腳本,、文本翻譯,、代碼編寫等任務(wù)上強(qiáng)大表現(xiàn),讓埃隆·馬斯克都聲稱感受到了AI的“危險(xiǎn)”,。最近大火的ChatGPT的計(jì)算邏輯來自于一個(gè)算法名字叫transformer,。它來源于2017年的一篇科研論文《Attention is all your need》。本來這篇論文是聚焦在自然語言處理領(lǐng)域,,但由于其出色的解釋性和計(jì)算性能開始廣泛地使用在AI各個(gè)領(lǐng)域,,成為最近幾年最流行的AI算法模型,無論是這篇論文還是transformer模型,,都是當(dāng)今AI科技發(fā)展的一個(gè)縮影,。
這也是我想在這里給大家分析這篇文章的核心要點(diǎn)和主要?jiǎng)?chuàng)新的初衷。
但我非AI(數(shù)學(xué),,計(jì)算機(jī))專業(yè),,只是梳理并分享自己學(xué)習(xí)的體會(huì)和思考,與大家一起討論,,歡迎各位多提寶貴意見,;所述并不專業(yè),各位大??梢岳@行,。
為什么選擇分析一篇本該在科研圈里流傳的科研論文,作為公眾號(hào)的首篇呢,?
從Transformer提出到“大規(guī)模與訓(xùn)練模型”GPT(Generative Pre-Training)的誕生,,再到GPT2的迭代標(biāo)志Open AI成為營利性公司,以及GPT3和ChatGPT的“出圈”,;再看產(chǎn)業(yè)界,,第四范式涉及到多個(gè)重要領(lǐng)域比如生物醫(yī)療,智能制造紛紛有以transformer落地的技術(shù)產(chǎn)生,。在這個(gè)浪潮下,,我的思考是:
一是,未來很長一段時(shí)間在智能化領(lǐng)域,,我們都將經(jīng)歷“科研,、算力,、基礎(chǔ)架構(gòu)、工程,、數(shù)據(jù),、解決方案”這個(gè)循環(huán)的快速迭代;流動(dòng)性,、創(chuàng)新性短期不會(huì)穩(wěn)定下來,,而是會(huì)越來越強(qiáng)。我們很難等到科技封裝好,,把這些知識(shí)全部屏蔽掉,,再去打磨產(chǎn)品。未來在競爭中獲勝的,,將是很好地“解決了產(chǎn)品化和科研及工程創(chuàng)新之間平衡”的團(tuán)隊(duì),。我們一般理解的研發(fā)實(shí)際上是工程,但AI的實(shí)踐科學(xué)屬性需要團(tuán)隊(duì)更好的接納這種“流動(dòng)性”,。因此對(duì)所有從業(yè)者或者感興趣智能化的小伙伴了解全棧知識(shí)成了一個(gè)剛需,。
二是,通過對(duì)這篇論文的探討,,可以更直觀地理解:在科研端發(fā)生了什么,,以什么樣的速度和節(jié)奏發(fā)生;哪些是里程碑,?是科學(xué)界的梅西橫空出世,,帶我們發(fā)現(xiàn)真理;哪些是微創(chuàng)新,?可能方向明確了,,但還有很多空間可以拓展;哪些更像煉金術(shù),?仍然在摸索,,尚需要很長一段時(shí)間,或者一直會(huì)保持這個(gè)狀態(tài),。
三是,,在AI領(lǐng)域,由于技術(shù)原因,,更多的論文是開源代碼的,,一方面,促進(jìn)了更多人參與進(jìn)來改進(jìn)迭代,;另一方面,,科研跟工程實(shí)現(xiàn)無縫連接,一篇論文可以拉動(dòng)從核心代碼到平臺(tái),,到具體應(yīng)用很大范圍的價(jià)值擴(kuò)散,。一篇論文很可能就是一個(gè)領(lǐng)域,,一條賽道,甚至直接驅(qū)動(dòng)業(yè)務(wù)價(jià)值和客戶價(jià)值的大幅提升,。
四是,, AI技術(shù)發(fā)展有很多領(lǐng)域(感知,認(rèn)知,,感知又分圖像,、語音、文字等,,認(rèn)知也可以分出很多層次)之前這些領(lǐng)域的算法邏輯存在很大差別,,transformer的出現(xiàn)有一定程度上推動(dòng)各個(gè)領(lǐng)域匯聚的跡象,介紹清楚這篇文章,,對(duì)把握整體,可能有些作用,。另外ChatGPT屬于現(xiàn)象級(jí)應(yīng)用,,大家更有直觀感受,未來這類應(yīng)用的體驗(yàn)提升和更新速度只會(huì)更快,,理解了其背后的邏輯,,更有助于我們把握這個(gè)趨勢。
現(xiàn)今,,知識(shí)迭代速度很快,,需要打下堅(jiān)實(shí)的基礎(chǔ)。我的私心是希望通過公眾號(hào)分享文章,,激勵(lì)自己更好地理解,、梳理相關(guān)知識(shí),以做嘗試;如果大家比較接受,,后面我會(huì)逐步把在工程,、方案、產(chǎn)品和企業(yè)智能化的思考逐漸沉淀并分享在這個(gè)公眾號(hào)里面,。圖片
論文介紹
下面步入正題,,開始介紹這篇論文,會(huì)涉及一些技術(shù)細(xì)節(jié)及公式,,可能還需要仔細(xì)看一下(先收藏,,留出15-20分鐘比家好),相信一旦看進(jìn)去,,你會(huì)對(duì)AI的理解加深很多,。
總體把握
這篇論文的結(jié)構(gòu)非常精煉,提出問題,,分析問題,,解決問題,,給出測試數(shù)據(jù)。頂刊文章講究言簡意賅,,有描述,,有代碼,有結(jié)果,;其中最核心的是以下這張圖,,作者團(tuán)隊(duì)提出transformer的核心算法結(jié)構(gòu):
整篇文章就是圍繞這張圖來進(jìn)行解釋的,由于篇幅所限,,我們聚焦在一條主線上:1.文章想解決主要問題是什么 2.如何解決的 3.從文章提出的解決方案作為一個(gè)案例來引發(fā)整體思考,,因此我們將內(nèi)容簡化,主要關(guān)注核心部分,。
這張圖表達(dá)的內(nèi)容如果理解了,,那基本上你掌握了這篇論文85%的內(nèi)容,也是最關(guān)鍵的部分,。
《Attention is all your need》在編寫時(shí)主要是為了考慮NLP任務(wù),,是由幾個(gè)Google的科研人員一起完成的,其中一個(gè)背景是Google也在推廣自己的并行計(jì)算芯片以及AI TensorFlow開發(fā)平臺(tái),。平臺(tái)主要功能特點(diǎn)是并行計(jì)算,,這篇文章的算法也是在最大限度的實(shí)現(xiàn)并行計(jì)算。我們就以一個(gè)簡單的例子來把這個(gè)算法串一遍,。
核心內(nèi)容
需求是我們需要訓(xùn)練一個(gè)模型,,進(jìn)行中文到英文翻譯。
背景知識(shí):這個(gè)需求要把“翻譯:我愛你 to I love you”轉(zhuǎn)置成一個(gè)y=f(x)問題,,x代表中文,,y是英文,我們要通過訓(xùn)練得到f(),,一旦訓(xùn)練成功f(),就可以實(shí)現(xiàn)翻譯,。大家拼的就是誰的訓(xùn)練方法更準(zhǔn)確,更高效,,誰的f()更好用,。
之前自然語言處理主要的算法叫RNN(循環(huán)神經(jīng)網(wǎng)絡(luò)),它主要的實(shí)現(xiàn)邏輯是每個(gè)“字”計(jì)算之后將結(jié)果繼承給第二個(gè)字,。算法的弊病是需要大量的串行計(jì)算,,效率低。而且當(dāng)遇到比較長的句子時(shí),,前面信息很有可能會(huì)被稀釋掉,,造成模型不準(zhǔn)確,也就是對(duì)于長句子效果會(huì)衰減,。這是這篇文章致力于要解決的問題,,也就是說這篇文章有訓(xùn)練處更好的f()的方法,。聯(lián)想一下ChatGPT可以做論文,感受一下,。
在Transformer里,,作者提出了將每個(gè)字與句子中所有單詞進(jìn)行計(jì)算,算出這個(gè)詞與每個(gè)單詞的相關(guān)度,,從而確定這個(gè)詞在這個(gè)句子里的更準(zhǔn)確意義,。(這句話要是理解了,后面其實(shí)可以不看了圖片)
在此處,,要開始進(jìn)入一些技術(shù)細(xì)節(jié),,在開始之前,我們有必要再熟悉一下機(jī)器學(xué)習(xí)領(lǐng)域最核心的一個(gè)概念——“向量”,。在數(shù)字化時(shí)代,,數(shù)學(xué)運(yùn)算最小單位往往是自然數(shù)字。但在AI時(shí)代,,這個(gè)最小單元變成了向量,。這是數(shù)字化時(shí)代計(jì)算和智能化時(shí)代最重要的差別之一。
舉個(gè)例子,,比如,在銀行,,判斷一個(gè)人的信用額度,,我們用一個(gè)向量來表示
向量是一組數(shù)據(jù)的集合,也可以想象成在一個(gè)超高維度空間里的一個(gè)點(diǎn),。一個(gè)具體的信用額度向量,,就是在8個(gè)特征組成的高維空間的一個(gè)點(diǎn)。數(shù)據(jù)在高維空間將展現(xiàn)更多的數(shù)學(xué)性質(zhì)比如線性可分,,容易讓我們抓住更多隱藏的規(guī)律,。
向量的加減乘除是計(jì)算機(jī)在進(jìn)行樣本訓(xùn)練是最主要的計(jì)算邏輯。第四范式一直強(qiáng)調(diào)的高維,,實(shí)時(shí),,自學(xué)習(xí),其中高維就是把企業(yè)信息拉升到一個(gè)非常高維的空間,,變成向量,。
Transformer模型的主要意義就是找到了一個(gè)算法,分成三步把一個(gè)詞逐步定位到了一個(gè)高維空間,,在這個(gè)過程中賦予這個(gè)單詞比其它算法更優(yōu)的信息,。很多情況下這個(gè)高維空間有著不同的意義,一旦這個(gè)向量賦予的信息更準(zhǔn)確更接近真實(shí)情況,,后面的機(jī)器學(xué)習(xí)工作就很容易展開,。還拿剛才信用額度向量舉例子
這兩個(gè)向量存在于兩個(gè)不同的向量空間,,主要的區(qū)別就是前者多了一個(gè)向量特征:“年薪”??梢运伎家幌氯绻袛嘁粋€(gè)人的信用額度,,“年薪”是不是一個(gè)很重要的影響因子?
以上例子還是很簡單的,,只是增加了一個(gè)特征值,,在transformer里就復(fù)雜很多,它是要把多個(gè)向量信息通過矩陣加減乘除綜合計(jì)算,,從而賦予一個(gè)向量新的含義,。
好,理解了向量的重要性,,我們看回transformer的三步走,,這三步走分別是:1.編碼(Embedding)2. 定位 (Positional encoding)3. 自注意力機(jī)制(Self-Attention)這個(gè)真的大名鼎鼎
舉個(gè)例子,比如,,翻譯句子Smart John is singing到中文,。
首先,要對(duì)句子每個(gè)詞進(jìn)行向量化,。
我們先看“John”這個(gè)詞,,需要先把“John”這個(gè)字母排列的表達(dá)轉(zhuǎn)換成一個(gè)512維度的向量john 這樣計(jì)算機(jī)可以開始認(rèn)識(shí)它。說明John是在這個(gè)512維空間的一個(gè)點(diǎn),;這是第一步:編碼(Embedding)
再次,,第二步 定位(Positional encoding):利用以下公式(這是這篇文章的創(chuàng)新)
微調(diào)一個(gè)新的高維空間,生成一個(gè)新的向量
我們不用太擔(dān)心這個(gè)公式,,它核心意義是:1.在這個(gè)新的向量里面每一位由原來的0和1表示,,分別取代成由sin和cos表示,這個(gè)目的是可以通過sin和cos的定律,,讓這個(gè)新向量不僅表示John這個(gè)單詞的意義,,還可以表示John在Smart John is singing這個(gè)句子的位置信息。如果不理解,,可以直接忽略,,只要記住第二步是用來在“表達(dá)John這個(gè)詞的向量”中,加入了John在句子中的位置信息,。John已經(jīng)不是一個(gè)孤立的詞,,而是一個(gè)具體句子中的一個(gè)詞,雖然還不知道句子中其他詞是什么含義,。
如果第一步計(jì)算機(jī)理解了什么是John,,第二步計(jì)算機(jī)理解了“* John**”。
最后,第三步,,自注意力機(jī)制(Self-Attention),,通過一個(gè)Attention(Q,K,,V)算法,,再次把John放到一個(gè)新的空間信息里,我們?cè)O(shè)為
在這個(gè)新向量里,,不僅包含了John的含義,,John在句子中位置信息,更包含了John和句子中每個(gè)單子含義之間的關(guān)系和價(jià)值信息,。我們可以理解,,John作為一個(gè)詞是一個(gè)泛指,但Smart John就具體了很多,,singing的Smart John就又近了一步,。而且Attention (Q,K,,V)算法,,不是對(duì)一個(gè)單詞周圍做計(jì)算,是讓這個(gè)單詞跟句子里所有單詞做計(jì)算,。通過計(jì)算調(diào)整這個(gè)單詞在空間里的位置,。
這種方法,可以在一個(gè)超長句子中發(fā)揮優(yōu)勢,,而且最關(guān)鍵的是一舉突破了時(shí)序序列的屏障,,以前對(duì)于圖像和NLP算法的劃分,很大程度上是由于NLP有很明顯的時(shí)序特征,,即每個(gè)單詞和下一個(gè)以及在下一個(gè)有比較明顯的時(shí)序關(guān)系。但Transformer這種算法打破了這種束縛,,它更在意一個(gè)單詞跟句子中每個(gè)單詞的價(jià)值權(quán)重,。這是Transformer可以用到everywhere的主要原因。
計(jì)算過程
?。ㄈ绻桓信d趣,,可以跳過這一部分介紹,直接進(jìn)入啟發(fā)收獲部分,,如需一些基礎(chǔ)知識(shí),,可以參考“智能化學(xué)習(xí)與思考”公眾號(hào)的基礎(chǔ)知識(shí)文章)
具體的計(jì)算過程,用翻譯句子“我愛你”到“I love you”舉例(這句更簡單一些),。首先進(jìn)行向量化并吸收句子位置信息,,得到一個(gè)句子的初始向量組。
?。ㄓ捎跇颖久總€(gè)句子長短不同,,所以每個(gè)句子都會(huì)是一個(gè)512*512的矩陣,,如果長度不夠就用0來代替。這樣在訓(xùn)練時(shí),,無論多長的句子,,都可以用一個(gè)同樣規(guī)模的矩陣來表示。當(dāng)然512是超參,,可以在訓(xùn)練前調(diào)整大小,。)
接著,用每個(gè)字的初始向量分別乘以三個(gè)隨機(jī)初始的矩陣WQ,,Wk,,Wv 分別得到三個(gè)量Qx,Kx,,Vx,。下圖以“我”舉例。
然后,,計(jì)算每個(gè)單詞的attention數(shù)值,,比如“我”字的attention值就是用“我”字的Q我分別乘以句子中其他單詞的K值,兩個(gè)矩陣相乘的數(shù)學(xué)含義就是衡量兩個(gè)矩陣的相似度,。然后通過一個(gè)SoftMax轉(zhuǎn)換(大家不用擔(dān)心如何計(jì)算),,計(jì)算出它跟每個(gè)單詞的權(quán)重,這個(gè)權(quán)重比例所有加在一起要等于1,。再用每個(gè)權(quán)重乘以相對(duì)應(yīng)的V值,。所有乘積相加得到這個(gè)Attention值。
這個(gè)attention數(shù)值就是除了“我”字自有信息和位置信息以外,,成功的得到了這個(gè)句子中每個(gè)單詞的相關(guān)度信息,。
大家可以發(fā)現(xiàn),在所有注意力系數(shù)的計(jì)算邏輯中其實(shí)只有每個(gè)字的初始矩陣WQ,,Wk,,Wv是未知數(shù)(這三個(gè)矩陣是所有文字共享的)。那么我們可以把這個(gè)transformer簡化成一個(gè)關(guān)于輸入,,輸出和這個(gè)W矩陣的方程:其中X是輸入文字信息,,Y是翻譯信息。
這里有必要再介紹一下機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí):Transformer算法本質(zhì)上是一個(gè)前饋神經(jīng)網(wǎng)絡(luò)模型,,它的計(jì)算基礎(chǔ)邏輯,,不去管復(fù)雜的隱藏層,就是假設(shè)Y=f(x)=wx,,(目標(biāo)還是要算出一個(gè)f())然后隨機(jī)設(shè)置一個(gè)w0,,開始計(jì)算這個(gè)y=w0x的成本函數(shù),然后再把w0變成w1,計(jì)算y=w1x的成本函數(shù),,以此類推計(jì)算出無數(shù)w(不是無數(shù)哈,,也會(huì)收斂的圖片),然后比較哪個(gè)w的成本函數(shù)最小,,就是我們訓(xùn)練出來的f(),。那么在transformer里,這三個(gè)初始矩陣就是那個(gè)w0,。
再回到transformer,,在計(jì)算Attention之后,每個(gè)單詞根據(jù)語義關(guān)系被打入了新的高維空間這就是Self-attention(自注意力機(jī)制),。
但在transformer里,,并不是代入了一個(gè)空間,而是代入了多個(gè)高維空間,,叫做多頭注意力機(jī)制,,
文章中沒有給出更清晰的理論支持,為什么是多頭,。
主要原因是在訓(xùn)練時(shí)效果很好,。這也是AI科研論文的一個(gè)特點(diǎn),常常憑借非常高的科研素養(yǎng)和敏感性,,發(fā)現(xiàn)一些方向,,并且通過測試確實(shí)有效,但不一定可以給出很完美的理論支撐,。這往往也給后續(xù)研究者一些可以進(jìn)一步完善的空間,。
事實(shí)證明,如何提升Attention(Q,,K,,V)效率是transformer領(lǐng)域迭代最快的部分。之后的Bert算法提出預(yù)訓(xùn)練機(jī)制成為了主流,,后面會(huì)做進(jìn)一步介紹,。
當(dāng)然,事后我們可以理解是把這個(gè)句子中的邏輯關(guān)系放到不同的高維空間去訓(xùn)練,,目的就是希望抓取更多的信息,,這一部分可以更加深刻理解科研人員對(duì)空間的應(yīng)用,。
除了以上內(nèi)容,,還有一些技術(shù)點(diǎn)比如Mask機(jī)制、layer norm,、神經(jīng)網(wǎng)絡(luò)激函數(shù)飽和區(qū)控制等,,由于篇幅關(guān)系以及屬于技術(shù)細(xì)節(jié)就不一一介紹了。
如果大家理解了多頭自注意力機(jī)制,基本已經(jīng)85%掌握了這篇論文的重要內(nèi)容,,也對(duì)還在快速擴(kuò)展影響力的transformer模型有了一個(gè)比較直觀的認(rèn)識(shí),。
啟發(fā)收獲
從理論科研進(jìn)步的角度看
1. Transformer打破了時(shí)序計(jì)算的邏輯,開始快速出圈,,多個(gè)AI原本比較獨(dú)立的領(lǐng)域開始在技術(shù)上融合,。再往里看,Transformer能打破時(shí)序很重要一點(diǎn)是并行計(jì)算的算力模式給更復(fù)雜的計(jì)算帶來了性價(jià)比上的可能性,。算力的進(jìn)一步提高,,必將在AI各細(xì)分領(lǐng)域帶來融合,更基礎(chǔ)設(shè)施級(jí)別的模型,,算法仍將不斷推出,。AI領(lǐng)域在圖像,NLP,;感知認(rèn)知領(lǐng)域的專業(yè)分工也會(huì)慢慢變模糊,。
2. AI科研確實(shí)具有一些實(shí)驗(yàn)性質(zhì)。除了核心思想,,確實(shí)還有很多技術(shù)點(diǎn)的解決方向已經(jīng)明確,,但還有很大的提升空間,可以預(yù)見圍繞transformer周邊的微創(chuàng)新會(huì)持續(xù)加速繁榮,。
3. 《Attention is all your need》在業(yè)內(nèi)大名鼎鼎,,但你要是細(xì)看,會(huì)發(fā)現(xiàn)很多內(nèi)容也是拿來主義,,比如最重要的Attention(Q,,K,V)中Query,,Key,,Value是互聯(lián)網(wǎng)推薦系統(tǒng)的標(biāo)配方法論;整個(gè)Transformer算法也是一個(gè)大的神經(jīng)網(wǎng)絡(luò),,算法是在前人基礎(chǔ)上一步一步迭代發(fā)展,,只是這個(gè)迭代速度明顯在加快。
從理論,、算法,、架構(gòu)、工程的角度看
4. AI算法科研領(lǐng)域正經(jīng)歷算法,、開源代碼,、工程、算力的增長飛輪,。
下圖是頂級(jí)刊物上的學(xué)術(shù)論文中,,開放源代碼的論文比例,,這個(gè)數(shù)據(jù)在這幾年以更快的速度在增長??蒲羞^程與工程過程產(chǎn)生越來越大的交集,。開源社區(qū)和開源文化本身也在推動(dòng)算法和工程的快速發(fā)展。
更多人參與,,更多領(lǐng)域的人參與進(jìn)來,,進(jìn)入門檻隨著算力成本、AI基礎(chǔ)架構(gòu)和代碼,、知識(shí)分享的開源逐漸降低,,科研與工程的邊界也變得模糊,這個(gè)就像足球運(yùn)動(dòng)的規(guī)律,,除了足球人口增多,,天才球員梅西出現(xiàn)的概率也會(huì)增大。
從數(shù)據(jù)和后續(xù)方案發(fā)展的角度看
5. ChatGPT的成功同大量的數(shù)據(jù)訓(xùn)練功不可沒,,但除了簡單對(duì)話互動(dòng)或者翻譯,,大篇幅回答甚至論文級(jí)別的答案還是極其缺乏樣本數(shù)據(jù)(算法訓(xùn)練需要的樣本數(shù)據(jù)需要清晰度X和Y)。而且Transformer的算法相比其他算法需要更大的數(shù)據(jù)量,,原因在于它需要起始階段隨機(jī)產(chǎn)生三個(gè)矩陣,,一步一步進(jìn)行優(yōu)化。除了Transformer以外,,另一個(gè)技術(shù)Bert也是技術(shù)發(fā)展非常重要的現(xiàn)象級(jí)算法,。其核心是一個(gè)簡化的Transformer,Bert不去做從A翻譯到B,,它隨機(jī)遮住X里面的一些單詞或句子讓算法優(yōu)化對(duì)遮住部分的預(yù)測,。這種思路使得Bert成為了Transformer預(yù)訓(xùn)練最好的搭檔。
如果通過Bert進(jìn)行預(yù)訓(xùn)練,,相當(dāng)于給矩陣加入了先驗(yàn)知識(shí)(之前訓(xùn)練邏輯沒有給機(jī)器任何提示,,規(guī)則后者基礎(chǔ)知識(shí)),提高了正式訓(xùn)練時(shí)初始矩陣的準(zhǔn)確度,,極大地提升了之后transformer的計(jì)算效率和對(duì)數(shù)據(jù)量的要求,。在現(xiàn)實(shí)中,舉例來說,,如果我想訓(xùn)練國家圖書館圖書,,之前需要每本書的信息和對(duì)這本書的解釋,或者中文書對(duì)應(yīng)的英文書,。但現(xiàn)在我們可以大量只是訓(xùn)練內(nèi)容,,不需要打標(biāo)簽,之后只需要通過transformer對(duì)樣本數(shù)據(jù)進(jìn)行微調(diào),。這就給ChatGPT很大的進(jìn)步空間,,而且可以預(yù)見,更多這類大模型會(huì)雨后春筍一般快速出現(xiàn),。
6. 由于transformer是更高級(jí)的神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法,,對(duì)數(shù)據(jù)量有很高要求,這也催生了從小數(shù)據(jù)如何快速產(chǎn)生大數(shù)據(jù)的算法,,比如GAN對(duì)抗網(wǎng)絡(luò)等,。這是AIGC領(lǐng)域的核心技術(shù)。解決數(shù)據(jù)量不足問題,,除了更高效率抽象小數(shù)據(jù)的信息,,也多了把小數(shù)據(jù)補(bǔ)足成大數(shù)據(jù)的方法,而且這些方法在快速成熟,。
7. 我們發(fā)現(xiàn)在機(jī)器學(xué)習(xí)算法中有大量的超級(jí)參數(shù),,比如在transformer里多頭機(jī)制需要幾頭N,文字變成向量是512還是更多,,學(xué)習(xí)速率等都需要在訓(xùn)練之前提前設(shè)置,。由于訓(xùn)練時(shí)間長,參數(shù)復(fù)雜,,要想遍歷更優(yōu)秀的計(jì)算效果需要非常長的摸索時(shí)間,。這就催生出AutoML,第四范式在這個(gè)領(lǐng)域研究多年,,拿Transformer舉例,,就要很多個(gè)路線進(jìn)行自動(dòng)化機(jī)器學(xué)習(xí);比如貝葉斯計(jì)算(找到更優(yōu)參數(shù)配置概率),;強(qiáng)化學(xué)習(xí)思路(貪婪算法在環(huán)境不明朗情況下迅速逼近最優(yōu)),;另外還有尋求全新訓(xùn)練網(wǎng)絡(luò)的方法(transformer,RNN,,MLP等聯(lián)合使用排列組合)等,。科研發(fā)展強(qiáng)調(diào)參數(shù)化,,工業(yè)發(fā)展強(qiáng)調(diào)自動(dòng)化,,這兩者看似統(tǒng)一,但在現(xiàn)實(shí)實(shí)操過程中往往是相當(dāng)痛苦矛盾的,。這也是開篇說的產(chǎn)品化和科研流動(dòng)性相平衡的一個(gè)重要領(lǐng)域,。