《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 基于木馬特征風險敏感的硬件木馬檢測方法
基于木馬特征風險敏感的硬件木馬檢測方法
電子技術應用
李林源,徐金甫,,嚴迎建,劉燕江
(信息工程大學 信息安全重點實驗室,,河南 鄭州 450000)
摘要: 針對現(xiàn)有硬件木馬檢測方法中存在的木馬檢出率偏低問題,提出一種基于木馬特征風險敏感的門級硬件木馬檢測方法,。通過分析木馬電路的結構特征和信號特征,,構建11維硬件木馬特征向量;提出了基于Borderline-SMOTE的硬件木馬特征擴展算法,,有效擴充了訓練數(shù)據(jù)集中的木馬樣本信息,;基于PSO智能尋優(yōu)算法優(yōu)化SVM模型參數(shù),建立了木馬特征風險敏感分類模型,。該方法基于Trust-Hub木馬庫中的17個基準電路展開實驗驗證,,其中16個基準電路的平均真陽率(TPR)達到100%,平均真陰率(TNR)高達99.04%,,與現(xiàn)有的其他檢測方法相比,,大幅提升了硬件木馬檢出率。
中圖分類號:TP309+.1
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223339
中文引用格式: 李林源,,徐金甫,,嚴迎建,等. 基于木馬特征風險敏感的硬件木馬檢測方法[J]. 電子技術應用,,2023,,49(6):35-43.
英文引用格式: Li Linyuan,Xu Jinfu,,Yan Yingjian,,et al. Hardware Trojan detection method based upon Trojan cost-sensitive[J]. Application of Electronic Technique,2023,,49(6):35-43.
Hardware Trojan detection method based upon Trojan cost-sensitive
Li Linyuan,,Xu Jinfu,Yan Yingjian,,Liu Yanjiang
(Key Laboratory of Information Security,, Information Engineering University, Zhengzhou 450000,, China)
Abstract: In the existing hardware Trojan detection methods, there is problem of low detection rate. Therefore, a cost-sensitive hardware Trojan detection was proposed. By analyzing the structural and signal features of Trojan circuits, an 11 dimensional Trojan feature vector was established. A Trojan feature expansion algorithm based on Borderline-SMOTE was proposed, which effectively expanded the Trojan sample information in the training set. Based on PSO algorithm, the parameters of SVM model were optimized, and a cost-sensitive classification model was established. 17 benchmark circuits from the Trust-Hub were used to verify the efficacy of the proposed approach. Among them, the TPR of 16 benchmark circuits is 100%, and the average TNR is as high as 99.04%. Compared with other existing methods, the detection rate of Trojan is improved greatly.
Key words : hardware Trojan detection,;cost-sensitive;PSO,;SVM classification model

0 引言

近些年來,,隨著半導體產(chǎn)業(yè)的蓬勃發(fā)展,集成電路(IC)設計和制造的外包已成常態(tài),,這為惡意的第三方供應商在IC中植入硬件木馬提供了機會,。硬件木馬一旦被激活,可能導致IC功能的改變、泄露內(nèi)部信息,、降低電路可靠性,,甚至使芯片失效??紤]到木馬電路為硬件安全帶來的巨大威脅,,硬件木馬檢測的研究一直在積極進行。然而,,硬件木馬的設計和檢測相互促進,、同步發(fā)展,即一種新的檢測方法被提出后,,攻擊者會立即設計出一種新的硬件木馬,,以規(guī)避該檢測方法。因此,,如何實現(xiàn)對未知硬件木馬的有效檢測是一個亟待解決的問題,。鑒于此問題,一種基于機器學習的硬件木馬檢測方法被提出,,通過分析和提取木馬電路的特征,,建立硬件木馬特征數(shù)據(jù)庫,應用機器學習模型進行分類器的訓練,,使用訓練好的分類器檢測門級網(wǎng)表中可能被植入的硬件木馬,。該方法不需要純凈的黃金網(wǎng)表作為參考,當新類型的硬件木馬出現(xiàn)時,,可以通過更新特征數(shù)據(jù)庫擴大檢測范圍,,實現(xiàn)對新型木馬的覆蓋,因而得到廣泛的研究,。



本文詳細內(nèi)容請下載:http://forexkbc.com/resource/share/2000005345




作者信息:

李林源,,徐金甫,嚴迎建,,劉燕江

(信息工程大學 信息安全重點實驗室,河南 鄭州 450000)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權禁止轉載,。