螺旋天線由于具有體積小,,定向型高的特點(diǎn),,在電話、電視和數(shù)據(jù)空間通信中廣為應(yīng)用,。
但是,,目前的仿真技術(shù)對(duì)螺旋天線的仿真存在一定的困難。采用有限元法(FEM)的仿真軟件,,如安捷倫的EMDS,,對(duì)于螺旋天線的網(wǎng)格剖分存在網(wǎng)格數(shù)量過多,導(dǎo)致超出內(nèi)存限制的問題,。對(duì)于螺旋天線陣列的仿真,更是心有余而力不足,。
安捷倫使用有限時(shí)域差分算法(FDTD)的AMDS(Antenna Modeling Design System)則可以利用自適應(yīng)網(wǎng)格剖分來對(duì)螺旋天線及其陣列進(jìn)行寬帶頻響仿真,。在使用硬件加速卡之后,更可以提高仿真速度10至20倍,。
在AMDS中,,可以快速的對(duì)螺旋天線進(jìn)行建模。
首先對(duì)螺旋天線模型進(jìn)行寬帶掃頻,,觀察其反射比較好的頻率范圍:(見圖1)
如對(duì)于此螺旋天線,,在18.5GHz附件反射系數(shù)低于-20dB,即此天線完全可以在18.5GHz使用,。
利用惠普的Compaq nc8230筆記本計(jì)算機(jī)(Pentium CPU 2.0GHz,,1.5GB內(nèi)存)進(jìn)行寬帶仿真,耗時(shí)11分10秒:(見圖2)
在18.5GHz處進(jìn)行單頻點(diǎn)計(jì)算,可以觀察單個(gè)螺旋天線的遠(yuǎn)場(chǎng)輻射圖,、電
場(chǎng)分布,、端口特性等參數(shù),便于工程師對(duì)設(shè)計(jì)進(jìn)行修正,。
單個(gè)螺旋天線的三維遠(yuǎn)場(chǎng)輻射圖及固定Theta=0,,Phi從0至360掃頻結(jié)果如下所示:(見圖3)
單個(gè)螺旋天線YZ截面的電場(chǎng)分布圖如下圖所示:
對(duì)單個(gè)螺旋天線的端口進(jìn)行分析,可知其VSWR為1.31,,阻抗為63.4-j*6.6,。
再進(jìn)行更為復(fù)雜的2×2螺旋天線陣列仿真。
將原有的單個(gè)螺旋天線模型進(jìn)行復(fù)制,、粘貼等命令,,并修改反射接地面,得到下圖所示的螺旋天線陣列圖:(見圖4)
可以觀察網(wǎng)格劃分以后的螺旋線性陣列,。用微小的正方體完全可以表征螺旋的物理特性,,這便是得到精確仿真結(jié)果最起碼的要求。
耗時(shí)97分鐘后,,可以得到螺旋天線陣列的單頻點(diǎn)特性,。
下圖為螺旋天線陣列的三維遠(yuǎn)場(chǎng)輻射圖及Theta=0,Phi從0至360掃頻結(jié)果:(見圖5)
可見,,相對(duì)于單個(gè)螺旋天線,,天線陣列的方向性更好,但由于饋電位置不太正確,,導(dǎo)致陣列的最大輻射方向不在其法向中心,。
螺旋天線陣列仿真的例子可以說明:安捷倫三維全波電磁場(chǎng)仿真工具AMDS可以幫助工程師進(jìn)行復(fù)雜的天線陣列的建模、仿真,,并得到多種參數(shù)供工程師進(jìn)行分析,。