《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 開環(huán)推挽逆變器軟開關(guān)如何實現(xiàn)
開環(huán)推挽逆變器軟開關(guān)如何實現(xiàn)
摘要: 電池供電的逆變器,為了減少回路中串聯(lián)的功率管數(shù)量,多采用推挽電路,其中的MOSFET多工作在硬開關(guān)狀態(tài),硬開關(guān)狀態(tài)有以下弊端,。
Abstract:
Key words :

 電池供電的逆變器,為了減少回路中串聯(lián)的功率管數(shù)量,多采用推挽電路,其中的MOSFET多工作在硬開關(guān)狀態(tài),硬開關(guān)狀態(tài)有以下弊端:

1,、功率管開關(guān)損耗大,如圖1所示.MOSFET關(guān)斷時,D極電壓上升,溝道電流下降,存在著VI同時不為零的時間,由此帶來了開關(guān)損耗,并且這個損耗隨著工作頻率的提高而加大,限制了更高頻率的采用.

2、為了避免兩管同時導(dǎo)通,設(shè)置了較大的死區(qū)時間,也因此而帶來了占空比的損失,其產(chǎn)生的后果是,功率管利用率降低,需要更大電流的功率管,電源脈動電流增大,引起濾波電解過熱.曾見過有廠家用CD4047做驅(qū)動,沒有死區(qū)時間,電解是不怎么熱了,但功率管更熱.

3,、密勒效應(yīng).在MOSFET關(guān)斷時,D極電壓快速上升,DV/DT很大,D極電壓通過反饋電容向輸入電容充電,有可能引起MOSFET再次開通,這在PCB和變壓器設(shè)計不合理的逆變器中更加嚴(yán)重.

4,、EMI問題.

所有以上這些問題,降低了電源的效率,較大的電壓和電流應(yīng)力降低了可靠性,由于工作頻率難以提高,功耗大也降低了功率密度,使得產(chǎn)品的體積重量加大.采用軟開關(guān)技術(shù),可以基本消除以上不利因互素的影響.

實現(xiàn)軟開關(guān)的方法,常見的有諧振法和移相法.現(xiàn)代電子技術(shù)日新月異,多種新技術(shù)大量采用,較高檔的電源采用DSP芯片隨時跟蹤MOSFET的工作狀態(tài),調(diào)整驅(qū)動參數(shù),確保其工作在軟開關(guān)狀態(tài).

在很多逆變器中,前級DC-DC部分不需要調(diào)壓,調(diào)壓的任務(wù)交給后級SPWM部分,更有一些電源,根本不需要對電壓進(jìn)行調(diào)整.這些電源或逆變器前級DC-DC工作在開環(huán)狀態(tài),這為我們用簡易方法實現(xiàn)軟開關(guān)創(chuàng)造了條件.下面將分以常用PWM芯片SG3525A和TL494和大家探討開環(huán)狀態(tài)下簡易軟開關(guān)的實現(xiàn)方法,。

要用普通PWM芯片實現(xiàn)簡易的軟開關(guān),有幾個先決條件:

1、功率管以1對為佳,大功率應(yīng)用時用大電流的管子,兩對可以嘗試,多對就不要指望了.

2,、變壓器兩邊繞組要完全對稱,PCB設(shè)計時兩管源級和漏極線路等長,源極到濾波電解盡可能短,驅(qū)動電路地線單獨連接到電解電容.

3,、MOSFET柵極驅(qū)動電路的選擇.MOS管的輸入電容都很大,以常用的IRF3205來說,Ciss為3247PF,要對此電容快速充放電,沒有優(yōu)良的驅(qū)動電路是無法做到的.很多大師做的電源類產(chǎn)品,MOSFET柵極電壓上升和下降時間為幾百納秒甚至1.2微秒,這樣大的開通/關(guān)斷時間在高頻應(yīng)用時效率都很低,更不要說軟開關(guān)了,總之,沒有高的開通/關(guān)斷速度,軟開關(guān)就無法實現(xiàn).常見電路有PWM芯片直推MOSFET,在驅(qū)動電流大時用NPN/PNP管射極跟隨器做成圖騰柱式電流放大電路,如圖2所示:

然而,這個電路有著固有的缺陷,速度慢,驅(qū)動能力不足,放電管有剩余電壓,無法在高效率電源中采用.在這里向大家推薦一個用NMOS/PMOS反向器構(gòu)成的圖騰柱驅(qū)動電路,如圖3所示:

這個電路驅(qū)動能力強,開關(guān)速度極快,但有一點,從驅(qū)動IC過來的信號經(jīng)過了圖騰柱中MOS管的反向,驅(qū)動IC必須能適應(yīng)這種邏輯的變化,可采用SG3527,和3525電路完全一樣,只不過是3527輸出的是負(fù)向推動脈沖,以適應(yīng)這種邏輯關(guān)系.  最好的方法是采用專用驅(qū)動IC,如MC33152,TC4427,FAN3224等,深圳高工以臺系芯睿單片機產(chǎn)生驅(qū)動信號,再經(jīng)MC33152專驅(qū)推動MOSFET,取得較好效果.

繼續(xù).要消除開關(guān)損耗,首先要知道開關(guān)損耗在什么時段產(chǎn)生的.在圖4中,C2C3為MOSFET的等效輸出電容,把輸出變壓器簡單的等效為一個理想變壓器和漏感,激磁電感的串并聯(lián)。

IRF3205的輸出電容C2和C3,查數(shù)據(jù)手冊為781PF,把變壓器的次級短路,測得的初級電感量就是變壓器的漏感,對于高頻變壓器來說,約在幾十到幾百NH,次級開路,測得的電感量就是變壓器的激磁電感,如果用PC40ETD29-Z磁芯繞2匝,電感量約為10μH

設(shè)某一時刻,Q1處于導(dǎo)通狀態(tài),其D極電壓為0,然后G極電壓開始下降,漏感L2中的電流不能突變,向等效電容C2充電,由于L2C2都很小,電流很大,Q1的D極電壓迅速上長,形成很高的所謂漏感尖峰,而此時Q1柵極電荷還沒有完全泄放,溝道中還有電流,其溝道電流和電壓同時不為零,產(chǎn)生了關(guān)斷損耗其值為定積分∫V(t)I(t)dt,而激磁電感L1中的電流則主要轉(zhuǎn)移到L1的下半段,并經(jīng)Q2中的體二極管返回電源,對開關(guān)損耗影響并不大,。

設(shè)某一時刻,Q1處于導(dǎo)通狀態(tài),其D極電壓為0,然后G極電壓開始下降,漏感L2中的電流不能突變,向等效電容C2充電,由于L2C2都很小,電流很大,Q1的D極電壓迅速上長,形成很高的所謂漏感尖峰,而此時Q1柵極電荷還沒有完全泄放,溝道中還有電流,其溝道電流和電壓同時不為零,產(chǎn)生了關(guān)斷損耗其值為定積分∫V(t)I(t)dt,而激磁電感L1中的電流則主要轉(zhuǎn)移到L1的下半段,并經(jīng)Q2中的體二極管返回電源,對開關(guān)損耗影響并不大,。


 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。