在通信系統(tǒng)" title="通信系統(tǒng)">通信系統(tǒng)的電路中,,大多存在兩種以上的電源" title="電源">電源,實(shí)際工程應(yīng)用中還常有蓄電池提供后備供電的情況,,對(duì)于這些電路,,在電壓變化的過(guò)程中,,可能會(huì)引發(fā)電路無(wú)效復(fù)位或上電失敗的故障。對(duì)此,,本文提出了一種實(shí)用的解決方案,。
圖1: FPGA的上電加載機(jī)制。
隨著通信設(shè)備復(fù)雜程度的提高,,工程應(yīng)用對(duì)設(shè)備的可靠性" title="可靠性">可靠性要求也隨之提高,。各種電源配送方案在工程運(yùn)用上得到了廣泛的應(yīng)用,在有后備電池供電的應(yīng)用上,,由于供電系統(tǒng)的切換,,通信設(shè)備內(nèi)各部件將面臨一次上電初始化的考驗(yàn)。
電路上電問(wèn)題分析
現(xiàn)在通信機(jī)房大多采用-48V直流電源,,而電子元器件一般采用低電壓供電,,以5V和3.3V最為常見(jiàn),近幾年隨著低功耗器件的大量使用,,1.5V,、1.8V、2.5V電源也被采用,。電路設(shè)計(jì)中往往采用DC-DC電源轉(zhuǎn)化模塊提供二次電源,。在同時(shí)使用多種電源時(shí),可采用多種電源模塊,,或采用一種電源模塊加多個(gè)直流電壓轉(zhuǎn)換器的方案,,下面就兩種典型情況作簡(jiǎn)單分析。
1.采用多電源模塊設(shè)計(jì)的電路
這種設(shè)計(jì)一般包括1只48-5V電源模塊和1只48-3.3V電源模塊,。其中5V電源模塊主要給電路內(nèi)5V器件供電,;3.3V電源模塊主要給電路內(nèi)FPGA、ASIC供電,,以及供給直流電壓轉(zhuǎn)換器進(jìn)行更小電壓的轉(zhuǎn)換,。這里應(yīng)當(dāng)指出,如果采用線性調(diào)壓器(LDO)進(jìn)行小電壓轉(zhuǎn)換時(shí),,上級(jí)電壓通常采用3.3V,,因?yàn)槌S玫?.5V、1.8V,、2.5V與5V的壓降很大,,在進(jìn)行電壓轉(zhuǎn)換的時(shí)候?qū)p失更多功率,同時(shí)增加系統(tǒng)的散熱負(fù)擔(dān),。
對(duì)于這種設(shè)計(jì),,由于不同電源模塊的指標(biāo)差異,存在上電順序的問(wèn)題,。如果5V達(dá)到穩(wěn)定的時(shí)間比3.3V早,,那么將可能造成如下問(wèn)題:a. 5V器件已經(jīng)運(yùn)行正常,,而3.3V的FPGA、ASIC還未加載或初始化完畢,。如果電路內(nèi)MCU單元為5V供電,,那么MCU初始化FPGA和ASIC失敗,電路工作將不正常,,這種情況理論上可以通過(guò)在MCU程序代碼里添加空轉(zhuǎn)等待語(yǔ)句,,但是實(shí)際上仍然存在問(wèn)題,見(jiàn)下面的分析,。
b. FPGA加載失敗。圖1顯示了一般可編程邏輯器件的上電加載機(jī)制,。圖2顯示了48-3.3V的某品牌電源模塊在用蓄電池加電時(shí),,其電壓在上升過(guò)程中與達(dá)到穩(wěn)定狀態(tài)前出現(xiàn)的較為嚴(yán)重的波動(dòng),測(cè)試其他電壓,,也發(fā)現(xiàn)類似情況,。
從圖1、圖2可以分析到,,F(xiàn)PGA在上電過(guò)程中需要自檢電壓,,一旦所有要求的電壓值大于某個(gè)范圍就開(kāi)始加載,而此時(shí)如果電壓波動(dòng)較大,,那么FPGA可能會(huì)加載失敗,,因?yàn)楫?dāng)波動(dòng)的電壓處于波峰時(shí)FPGA快速檢查電壓并可能通過(guò),在FPGA加載正進(jìn)行到下面某一步時(shí),,電壓值突然下降直至波谷,,那么FPGA的后續(xù)加載操作將異常。當(dāng)然,,現(xiàn)在不少FPGA在上電自檢的時(shí)候都有個(gè)監(jiān)測(cè)電壓是否穩(wěn)定的過(guò)程,,加載失敗的情況基本上很少,不過(guò)大部分的FPGA對(duì)電壓都有嚴(yán)格的要求,。
圖2:電源紋波示例,。
c.與b類似,很多ASIC專用芯片,、CPLD在上電初始化的時(shí)候都需要有穩(wěn)定的電壓,,這里不再累述,可以參閱相關(guān)芯片資料,。
2.采用單電源模塊設(shè)計(jì)的電路
目前在系統(tǒng)設(shè)計(jì)中,,為了兼容各種電壓也常采用48-5V單電源模塊和加直流電壓轉(zhuǎn)換器的方案。其實(shí)采用單電源模塊的設(shè)計(jì)同樣面臨上面提到的問(wèn)題,。單電源模塊也存在上電順序先后的問(wèn)題,。因?yàn)殡娫茨K直接輸出5V,,其他電壓值通過(guò)直流電壓轉(zhuǎn)換器轉(zhuǎn)換,因此小于5V的電壓上電肯定晚于5V,。
在蓄電池供電的情況下,,由于蓄電池的本身特性,在上電的時(shí)候其電壓是緩慢上升的,,由于現(xiàn)在DC-DC模塊的設(shè)計(jì)差異,,某些模塊在慢上電的過(guò)程中出現(xiàn)的電壓擺動(dòng)仍然會(huì)影響FPGA和ASIC的初始化。
解決方法
對(duì)應(yīng)可能出現(xiàn)的問(wèn)題,,可以找到相應(yīng)的解決方法,。在前文分析的第一種情況(采用多電源模塊)下,對(duì)應(yīng)a,,可以復(fù)位MCU,;對(duì)應(yīng)b,可以復(fù)位FPGA,;對(duì)應(yīng)c,,可以復(fù)位相關(guān)芯片。對(duì)于第2種情況(采用單電源模塊),,復(fù)位相應(yīng)的芯片也可以解決問(wèn)題,。所以最直接有效的方法就是復(fù)位。
當(dāng)然我們不可能等到故障出現(xiàn)的時(shí)候再去手動(dòng)復(fù)位,,這里可以考慮使用Maxim公司的MAX708芯片來(lái)完成自動(dòng)復(fù)位的功能,。
MAX708是一種微處理器電源監(jiān)控芯片,可同時(shí)輸出高電平有效和低電平有效的復(fù)位信號(hào),。復(fù)位信號(hào)可由VCC 電壓,、手動(dòng)復(fù)位輸入或由獨(dú)立的比較器觸發(fā)。獨(dú)立的比較器可用于監(jiān)視第二個(gè)電源信號(hào),。在電路設(shè)計(jì)中,,MCU單元一般由51單片機(jī)構(gòu)成,單片機(jī)的復(fù)位信號(hào)是高有效,。一般FPGA和ASIC的復(fù)位信號(hào)都是低有效,。由于MAX708可同時(shí)輸出高電平有效和低電平有效的復(fù)位信號(hào),因此可以利用MAX708的這個(gè)特點(diǎn)來(lái)解決電路內(nèi)MCU,、FPGA,、ASIC的上電復(fù)位問(wèn)題。
如圖3所示,,當(dāng)PFI端子上的電壓值小于1.25V時(shí),,PFO端子將輸出低電平(平時(shí)為高)。由于PFI端子的這個(gè)特性,可以用它來(lái)監(jiān)控電路上的1.5V電壓,。在通信設(shè)備里,,電路上一般含有5V、3.3V,、2.5V,、1.8V、1.5V的電壓值,,1.5V應(yīng)該屬于末級(jí)電壓,,就是說(shuō)通過(guò)直流電壓轉(zhuǎn)換器最后轉(zhuǎn)壓出來(lái)的,我們監(jiān)控了最小電壓(1.5V),,自然也就不必理會(huì)它的上級(jí)電壓了,。
圖3:利用MAX708實(shí)現(xiàn)上電復(fù)位應(yīng)用。
這里PFI上的電壓值大概為1.3V,,當(dāng)然電壓值越接近1.25V,,電壓監(jiān)控的靈敏度越高??梢杂霉絳(Vsupply-VPFI)/R1}=(VPFI/R2)計(jì)算出需要的電阻比值。這里Vsupply為1.5V,,VPFI為1.3V,。
可以想象,電路上電過(guò)程中,,1.5V的末級(jí)電壓如果沒(méi)有達(dá)到要求,,復(fù)位信號(hào)將一直存在,包括給MCU的RST復(fù)位信號(hào),,和給其它芯片的低電平有效的復(fù)位信號(hào),。圖3中的MREST為手動(dòng)添加的復(fù)位信號(hào)。
需要指出的是,,MAX708本身可以監(jiān)控VCC電壓(這里為5V),,這對(duì)電路采用多電源模塊的設(shè)計(jì)是很有用的。因?yàn)閮蓚€(gè)電源模塊相互獨(dú)立,,5V和1.5V可能不是源于同一個(gè)電源模塊,,所以在監(jiān)控1.5V的同時(shí)也需要監(jiān)控5V電壓。
當(dāng)然,,由于MAX708芯片本身的限制,,它無(wú)法監(jiān)控小于1.25V的電壓。但是在電信級(jí)設(shè)備中,,功耗問(wèn)題并不很迫切,,所以這樣小的電壓基本上應(yīng)用很少。
本文小結(jié)
電源波動(dòng)造成的電路上電失敗故障,只是涉及電源可靠性的一個(gè)方面,。這里舉的一個(gè)實(shí)際應(yīng)用的例子可能并不適合于各種情況,,其目的只是在于提醒設(shè)計(jì)人員在有關(guān)電源設(shè)計(jì)中可能存在的隱患。現(xiàn)在,,F(xiàn)PGA和ASIC在降低功耗的同時(shí),,也具有越來(lái)越多的驅(qū)動(dòng)電壓,某些器件還特別對(duì)各種電壓的上電順序有嚴(yán)格的要求,。硬件工程師在應(yīng)用這些器件進(jìn)行系統(tǒng)功能設(shè)計(jì)的同時(shí),,也將越來(lái)越多的面臨如何提高電源可靠性方面的挑戰(zhàn)。