1 引言
本文提到的多路輸出軍用車載電源是一種輸入輸出均為低壓大電流的雙路DC/DC開關(guān)電源。輸入電壓9~15V,,輸出電壓2路:一路24V,;一路5V。24V輸出又同時(shí)供給三路負(fù)載,;輸入電壓又直接供給兩路負(fù)載,,如圖1所示。
圖1 電路框圖
考慮到輸出獨(dú)立保護(hù)的要求,,本電源采用了兩路獨(dú)立的電路結(jié)構(gòu),,24V輸出功率較大采用Forward,5V輸出功率較小采用Flyback,。
下面就電路中一些特殊的設(shè)計(jì)做一些介紹,。
2 散熱器設(shè)計(jì)
散熱方式是電源產(chǎn)品設(shè)計(jì)中首先需要考慮的部分,因?yàn)?,它關(guān)系著電路設(shè)計(jì)中元器件的選取,,PCB的設(shè)計(jì)等一系列問題。通常的電源產(chǎn)品都采用風(fēng)扇冷卻,,這樣可以達(dá)到比較好的散熱效果,。
本文提到的軍用車載電源,由于長(zhǎng)期工作在震動(dòng)和沖擊的環(huán)境下,,采用風(fēng)扇冷卻會(huì)影響電源系統(tǒng)的可靠性,,因此,采用自然冷卻的散熱結(jié)構(gòu),。整個(gè)裝置的散熱器結(jié)構(gòu)安排如圖2所示,。功率半導(dǎo)體器件放在PCB板的背面并緊貼底板,,直接通過底板散熱,底板采用厚鋁材料,,整個(gè)裝置安裝在大鐵板上(裝甲車),。裝置的兩側(cè)用帶翼的散熱片,兼起支撐作用,。這樣整個(gè)散熱器的安排不但能達(dá)到比較好的散熱效果,,還可以充分利用PCB板的空間,一定程度上減少了整個(gè)裝置的體積,。
圖2 散熱器結(jié)構(gòu)
3 三重過流保護(hù)
由于是軍用車載電源,,對(duì)裝置的穩(wěn)定性和可靠性要求非常高,所以,,采用了三重過流保護(hù),,即微秒級(jí)保護(hù)、毫秒級(jí)保護(hù)及秒級(jí)保護(hù),。
3.1 微秒級(jí)保護(hù)
微秒級(jí)保護(hù)是指電源出現(xiàn)輸出過流或者短路時(shí),,在一個(gè)開關(guān)周期內(nèi)就能進(jìn)行保護(hù)。因?yàn)?,通常開關(guān)周期都是設(shè)計(jì)為微秒級(jí),,所以,稱此保護(hù)為微秒級(jí)保護(hù),。具體的實(shí)施方法如圖3所示,,峰值電流控制信號(hào)連到PWM芯片L5991[1]的腳ISE,當(dāng)腳ISE的電壓大于1V時(shí),,L5991輸出就為低電平,,從而關(guān)斷開關(guān)管。此保護(hù)在每個(gè)開關(guān)周期進(jìn)行判斷,,因此,,反應(yīng)速度比較快,用以保護(hù)瞬間的過流,。
圖3 電流峰值保護(hù)及恒流保護(hù)電路
3.2 毫秒級(jí)保護(hù)
毫秒級(jí)保護(hù)是指PI環(huán)的恒流保護(hù),,它的保護(hù)時(shí)間一般在幾十到幾百個(gè)開關(guān)周期,這里就稱它為毫秒級(jí)保護(hù),。由于取樣電流峰值保護(hù)是單周保護(hù),,穩(wěn)定性不是很好,只能對(duì)過渡過程的過流進(jìn)行有效的保護(hù),。因此,,針對(duì)較長(zhǎng)時(shí)間的短路或過流,在這里采用PI環(huán)的恒流保護(hù)還是很有必要的,。圖3虛線框內(nèi)為恒流保護(hù)電路,,它利用峰值電流控制中的電流信號(hào)作為輸入信號(hào),,通過一個(gè)由D1,R1,,C1組成的峰值保持電路和由運(yùn)放組成的PI環(huán)節(jié)得到一個(gè)誤差信號(hào),,在變換器的輸出電流超過限定值的時(shí)候,該誤差信號(hào)就會(huì)控制PWM芯片的占空比,,從而使輸出電流保持在限定值,。由于D2存在,當(dāng)輸出電流低于限流值時(shí),,該部分電路對(duì)占空比的控制不起作用,。
3.3 秒級(jí)保護(hù)
秒級(jí)保護(hù)是指電路中的自恢復(fù)保險(xiǎn)絲保護(hù)(自恢復(fù)保險(xiǎn)絲的保護(hù)時(shí)間在幾秒以上),如圖1所示,。當(dāng)電路處于上述的恒流保護(hù),,如果時(shí)間過長(zhǎng)會(huì)使裝置過熱,若按照過流保護(hù)來做熱設(shè)計(jì)會(huì)增加裝置的成本,。因此,,對(duì)于長(zhǎng)時(shí)間(幾秒以上)的短路或過流,需要用保險(xiǎn)絲進(jìn)行保護(hù),。本裝置中采用的是自恢復(fù)保險(xiǎn)絲,,當(dāng)負(fù)載恢復(fù)正常時(shí),,自恢復(fù)保險(xiǎn)絲也能恢復(fù)到正常導(dǎo)通狀態(tài),。采用自恢復(fù)保險(xiǎn)絲的另外一個(gè)原因是裝置要求的每路負(fù)載獨(dú)立保護(hù),當(dāng)一路過流保護(hù)時(shí),,該路的自恢復(fù)保險(xiǎn)絲斷開,,其他幾路還能正常工作。5V那一路沒加自恢復(fù)保險(xiǎn)絲是考慮到它本身就只有一路負(fù)載,,可以通過微秒級(jí)和毫秒級(jí)實(shí)現(xiàn)保護(hù),,另外由于5V輸出電壓比較小,加上自恢復(fù)保險(xiǎn)絲會(huì)影響其輸出調(diào)整率,。
4 RCD/RC雙重吸收
反激變換器由于變壓器漏感的存在,,當(dāng)開關(guān)管關(guān)斷時(shí),開關(guān)管的D-S兩端會(huì)產(chǎn)生比較高的電壓尖峰,。這個(gè)電壓尖峰增大了開關(guān)管的電壓應(yīng)力,,同時(shí)又會(huì)產(chǎn)生電磁干擾,因此,,必須采用吸收電路加以抑制,。RCD吸收電路由于簡(jiǎn)潔且易實(shí)現(xiàn),在小功率場(chǎng)合是比較常用的,。RCD吸收反激變換器如圖4所示,。從圖6中可以看到,,加RCD吸收電路以后,開關(guān)管D-S兩端的電壓尖峰大大地減少了,,但是,,同時(shí)也產(chǎn)生了新的更高頻率的振蕩,究其原因是變壓器原邊漏感與二極管的結(jié)電容諧振引起的,。從電磁兼容考慮該振蕩必須加以抑制,。改變R,C,,D的參數(shù)對(duì)新的振蕩的影響并不大,,因此,需要附加其它電路來抑制,,在開關(guān)管D-S兩端加上RC吸收電路在實(shí)驗(yàn)中取得了比較理想的效果,。圖5即為RCD/RC雙重吸收電路,圖7所示的是RCD吸收反激變換器和RCD/RC雙重吸收反激變換器開關(guān)管Vds的實(shí)驗(yàn)波形,。
圖4 RCD吸收電路
圖 5RCD/RC雙重吸收電路
(a) Without snubber (b) RCD snubber
圖6 加RCD吸收電路前后vds的實(shí)驗(yàn)波形
(a) RCD snubber (b)RCD/RC snubber
圖7 加RCD吸收電路及RCD/RC雙重吸收電路后vds的實(shí)驗(yàn)波形
5 諧振RCD復(fù)位
正激變換器有很多種復(fù)位方式:諧振復(fù)位,;第三繞組復(fù)位;RCD復(fù)位,;有源鉗位等,。這里介紹一種低成本折衷的方案:諧振RCD復(fù)位。
如圖8(a)所示,,諧振復(fù)位正激變換器是在主開關(guān)S上并聯(lián)了一只電容C,,通過電容C和變壓器激磁電感Lm諧振產(chǎn)生一個(gè)正弦波對(duì)變壓器復(fù)位。圖8(b)是諧振復(fù)位正激變換器的主要工作波形,,其中VT是變壓器上的電壓,,iLm是變壓器的激磁電流。這些波形考慮到變壓器漏感的存在,,并且是在重載下的波形,。若不考慮漏感或是負(fù)載電流為零的情況下,諧振復(fù)位電壓應(yīng)該是一個(gè)正弦波,。開關(guān)管關(guān)斷瞬間,,變壓器上有一個(gè)電壓尖峰,那是由于漏感Ls中貯存的能量向諧振電容C轉(zhuǎn)移而引起的,,即為變壓器漏感和電容C的諧振,。該諧振周期要遠(yuǎn)小于激磁電感和電容C的諧振周期。
(a) 諧振復(fù)位正激變換器
(b) 諧振復(fù)位正激變換器工作波形
圖8 諧振復(fù)位正激變換電路及工作波形
圖9(a)所示的是RCD復(fù)位正激變換器,,即在變壓器上并聯(lián)了一個(gè)由二極管D,,電容C,電阻R組成的環(huán)節(jié),在開關(guān)S關(guān)斷時(shí)由激磁電感和漏感的感應(yīng)電勢(shì)使二極管D導(dǎo)通,,由電容C上的電壓對(duì)變壓器復(fù)位,。圖9(b)是RCD復(fù)位正激變換器的主要工作波形。電容C兩端電壓在一個(gè)開關(guān)周期內(nèi)近似為直流電壓,,則RCD復(fù)位電壓是一個(gè)方波,。同樣在開關(guān)管關(guān)斷瞬間,變壓器上有一個(gè)電壓尖峰,,是由變壓器漏感與開關(guān)管結(jié)電容諧振引起的,。
(a) RCD復(fù)位正激變換器
(b) RCD復(fù)位正激變換器工作波形
圖9 RCD復(fù)位正激變換器電路及工作波形
諧振復(fù)位和RCD復(fù)位都有其各自的優(yōu)缺點(diǎn),而且,,兩種復(fù)位方式的優(yōu)缺點(diǎn)基本上是互補(bǔ)的,。
1)根據(jù)伏秒平衡原理,VT一個(gè)周期內(nèi)平均值要等于零,。諧振復(fù)位的復(fù)位電壓是正弦波,,因此復(fù)位電壓的平臺(tái)相對(duì)比較高,即開關(guān)管S的VDS電壓平臺(tái)比較高,,而RCD復(fù)位的復(fù)位電壓是方波,,所以復(fù)位電壓的平臺(tái)相對(duì)比較低,也即開關(guān)管S的VDS電壓平臺(tái)比較低,。
2)諧振復(fù)位正激變換器變壓器上的電壓尖峰(最終反映到vDS的電壓尖峰)是由變壓器漏感LS與電容C諧振造成的,,而RCD復(fù)位正激變換器變壓器上的電壓尖峰是由變壓器漏感LS與開關(guān)管S的結(jié)電容諧振造成的。由于電容C的容量遠(yuǎn)遠(yuǎn)大于開關(guān)管S的結(jié)電容,,諧振復(fù)位電壓尖峰的諧振周期要遠(yuǎn)大于RCD復(fù)位電壓尖峰的諧振周期,,因此,在變壓器漏感LS上的負(fù)載電流能量一定的情況下,,諧振復(fù)位的電壓尖峰幅度要比RCD復(fù)位的電壓尖峰幅度低得多,。從另一個(gè)角度理解,可以認(rèn)為諧振復(fù)位正激變換器在開關(guān)管D-S間并聯(lián)的電容C起到了吸收電壓尖峰的作用,。
3)RCD復(fù)位正激變換器的激磁能量和漏感能量全部消耗在電阻R上,而諧振復(fù)位正激變換器的激磁能量和漏感能量基本上沒有消耗,,見圖8(b),。但是由于諧振復(fù)位正激變換器在開關(guān)導(dǎo)通之前,電容C兩端的電壓為Vin,,因此有CVin2的能量消耗在開關(guān)管開通過程中,。
4)從圖8(b)及圖9(b)iLm波形可以看到,諧振復(fù)位正激變換器變壓器磁偏比較小,,而RCD復(fù)位正激變換器變壓器磁偏較大,。
以上分析可以得知,兩種復(fù)位方式的正激變換器都有各自的優(yōu)點(diǎn),但缺點(diǎn)也比較明顯,,在某些時(shí)候設(shè)計(jì)起來有較大的瓶頸,。這就不難想到將兩種復(fù)位方式結(jié)合起來,來軟化它們各自的缺點(diǎn),,同時(shí)還能帶來新的優(yōu)點(diǎn),,即諧振RCD復(fù)位正激變換器。
圖10(a)所示的即為諧振RCD復(fù)位正激變換器,,可以看到在線路上它就是諧振復(fù)位正激變換器和RCD復(fù)位正激變換器的結(jié)合,。圖10(b)是諧振RCD復(fù)位正激變換器的主要工作波形。諧振RCD復(fù)位正激變換器在一個(gè)周期內(nèi)可以分為5個(gè)階段,。
(a) 諧振RCD復(fù)位正激變換器
(b) 諧振復(fù)位RCD正激變換器工作波形
圖10 諧振RCD復(fù)位正激變換器電路及工作波形
(1)階段1〔t0~t1〕 t0時(shí)刻主開關(guān)S開通,,變壓器上承受輸入電壓,激磁電流線形上升,。副邊二極管DR1導(dǎo)通,。
(2)階段2〔t1~t2〕 t1時(shí)刻S關(guān)斷,首先發(fā)生的是諧振復(fù)位,,漏感上的貯存能量向電容C2轉(zhuǎn)移,,產(chǎn)生一個(gè)電壓尖峰(這是漏感和電容C2的諧振)。然后激磁電感和漏感加在一起和電容C2諧振,。因變壓器上電壓為下正上負(fù),,所以副邊整流二極管DR1截止,續(xù)流二極管DR2導(dǎo)通,。
(3)階段3〔t2~t3〕 當(dāng)復(fù)位電壓諧振到超過C1上的電壓,,二極管D就導(dǎo)通,激磁電流流向電容C1,。成為RCD復(fù)位的狀態(tài),。此時(shí)激磁電流線性下降。這也保證了復(fù)位電壓不會(huì)過高,,從而使得開關(guān)管的電壓應(yīng)力得到控制,。當(dāng)激磁電流下降到零,該狀態(tài)結(jié)束,。
(4)階段4〔t3~t4〕 激磁電流下降到零之后,,二極管D就截止。但是,,C2上的能量又會(huì)回饋給激磁電感,,也就是說,此時(shí)是C2和激磁電感發(fā)生諧振,。C2上電壓下降,,激磁電流反向增加。直到C2上電壓下降到與輸入電壓相等,也就是變壓器上電壓下降到零,,該狀態(tài)結(jié)束,。
(5)階段5〔t4~t5〕 變壓器上電壓只要出現(xiàn)一個(gè)微小的上正下負(fù)的值,副邊二極管DR1就導(dǎo)通,,激磁電流流過DR1,。但是該電流不足以提供負(fù)載電流,所以,,續(xù)流管DR2也繼續(xù)保持導(dǎo)通,,提供不足部分的負(fù)載電流。同時(shí)DR1和DR2共同導(dǎo)通也保證了變壓器上電壓為零,,激磁電流保持不變,。該狀態(tài)一直保持到開關(guān)管S的再次導(dǎo)通。
諧振RCD復(fù)位正激變換器諧振電容C2的取值應(yīng)該小于諧振復(fù)位正激變換器的諧振電容C,,這樣在諧振復(fù)位階段(階段2和階段4)復(fù)位電壓的上升和下降比較快,,所以在同是t2時(shí)間內(nèi)完成復(fù)位的情況下,諧振RCD復(fù)位正激變換器的平臺(tái)電壓要比諧振復(fù)位低,,接近RCD復(fù)位正激變換器的平臺(tái)電壓,。由于C2小于C,但比開關(guān)管的結(jié)電容還是大很多,,因此諧振RCD復(fù)位正激變換器變壓器的電壓尖峰比諧振復(fù)位的略大,,而比RCD復(fù)位的小很多。從以上分析得到,,諧振RCD復(fù)位正激變換器變壓器的電壓平臺(tái)及尖峰都較低,,因此,開關(guān)應(yīng)力較低,。而在激磁能量損耗(有部分的激磁能量回饋),,開關(guān)損耗(C2<C),變壓器磁偏(見各種復(fù)位方式的激磁電流波形)方面,,諧振RCD復(fù)位正激變換器是諧振復(fù)位正激變換器和RCD復(fù)位正激變換器的折衷,。
6 飽和電感的應(yīng)用
由于該電源裝置是低壓大電流輸入和輸出,所以,,二極管上的反向恢復(fù)問題相當(dāng)嚴(yán)重,,尤其是正激變換器的續(xù)流二極管DR2。圖11(a)是正激變換器的DR2上的電壓波形,,可以看到有很高的電壓尖峰。這不僅增加了損耗,,抬高了所需器件的額定電壓值,,而且對(duì)于電磁兼容也是非常不利的。采用飽和電感和二極管串聯(lián),如圖11(b)所示,,可以大大削弱二極管的反向恢復(fù),,同時(shí)又不會(huì)增加很多損耗。加了飽和電感后,,二極管DR2上電壓波形如圖11(b)所示,。可以看到加了飽和電感后,,DR2上的電壓尖峰從將近160V降到了80V,。
(a) 不加飽和電感 (b) 加飽和電感
圖11 加飽和電感前后DR2兩端的電壓波形
7 結(jié)語
本文闡述了要求非常高的軍用車載電源的設(shè)計(jì)及實(shí)驗(yàn)過程中的一些特殊問題的解決措施,也提出了一些新穎的觀點(diǎn),。這些觀點(diǎn)對(duì)以后的開關(guān)電源設(shè)計(jì)有一定的借鑒作用,。