《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 大電流便攜式DC/DC變換中MOSFET功耗的計(jì)算
大電流便攜式DC/DC變換中MOSFET功耗的計(jì)算
摘要: 本文分析了一個(gè)多相,、同步整流、降壓型CPU電源中MOSFET功耗的計(jì)算方法,。
Abstract:
Key words :

0    引言

    眾所周知,今天的便攜式" title="便攜式">便攜式電源設(shè)計(jì)者所面臨的最嚴(yán)峻挑戰(zhàn)就是為當(dāng)今的高性能CPU提供電源,。近年來(lái),,內(nèi)核CPU所需的電源電流每?jī)赡昃头环幢銛y式內(nèi)核CPU電源電流需求會(huì)高達(dá)40A之大,,而電壓在0.9V和1.75V之間,。事實(shí)上,盡管電流需求在穩(wěn)步增長(zhǎng),,而留給電源的空間卻并沒(méi)有增加,,這個(gè)現(xiàn)實(shí)已達(dá)到甚至超出了在熱設(shè)計(jì)方面的極限。

    對(duì)于如此大電流的電源,通常將其分割為兩個(gè)或多相,,即每一相提供15A到25A,,例如,將一個(gè)40A電源變成了兩個(gè)20A電源,。雖然可以使元器件的選擇更容易,,但是并沒(méi)有額外增加板上或環(huán)境空間,對(duì)于減輕熱設(shè)計(jì)的工作基本上沒(méi)有多大幫助,。這是因?yàn)樵谠O(shè)計(jì)大電流電源時(shí),,MOSFET" title="MOSFET">MOSFET是最難確定的器件。這一點(diǎn)在筆記本電腦中尤其顯著,,在這種環(huán)境中,,散熱器、風(fēng)扇,、熱管和其它散熱方式通常都留給了CPU。而電源設(shè)計(jì)常常要面臨諸多不利因素,諸如狹小的空間和靜止的氣流以及其元器件散發(fā)的熱量等惡劣環(huán)境,,而且,,沒(méi)有任何其它方式可以用來(lái)協(xié)助散熱。

    那么如何挑選MOSFET呢,?回答是,,在挑選MOSFET時(shí),首先要選擇有足夠的電流處理能力的,,并具有足夠的散熱通道的,,最后還要從量化上考慮必要的熱耗和保證足夠的散熱路徑,據(jù)此,,計(jì)算出MOSFET的功耗" title="功耗">功耗,,并確定它們的工作溫度。本文分析了一個(gè)多相,、同步整流,、降壓型CPU電源中MOSFET功耗的計(jì)算方法。

1    MOSFET功耗的計(jì)算

    為了確定一個(gè)MOSFET是否適合于特定的應(yīng)用,,必須計(jì)算其功耗,,MOSFET功耗(PL)主要包含阻性損耗(PR)和開(kāi)關(guān)損耗(PS)兩部分,即

    PL=PRPS

    MOSFET的功耗很大程度上依賴(lài)于它的導(dǎo)通電阻RDS(on),,但是,,MOSFET的RDS(on)與它的結(jié)溫Tj有關(guān)。而Tj又依賴(lài)于MOSFET管的功耗以及MOSFET的熱阻θJA,。由于功耗的計(jì)算涉及到若干個(gè)相互依賴(lài)的因素,,為此,可以采用一種迭代過(guò)程獲得我們所需要的結(jié)果,如圖1流程所示,。

圖1    選擇同步整流和開(kāi)關(guān)MOSFET的迭代過(guò)程流程

    迭代過(guò)程起始于為每個(gè)MOSFET假定一個(gè)Tj,,然后,計(jì)算每個(gè)MOSFET各自的功耗和允許的環(huán)境溫度,。當(dāng)允許的環(huán)境溫度達(dá)到或略高于機(jī)殼內(nèi)最高溫度設(shè)計(jì)值時(shí),,這個(gè)過(guò)程便結(jié)束了。這是一種逆向的設(shè)計(jì)方法,,因?yàn)?,先從一個(gè)假定的Tj開(kāi)始計(jì)算,要比先從環(huán)境溫度計(jì)算開(kāi)始容易一些,。

    能否將這個(gè)計(jì)算所得的環(huán)境溫度盡可能地提高呢,?回答是不行的。因?yàn)?,這勢(shì)必要求采用更昂貴的MOSFET,,并在MOSFET下鋪設(shè)更多的銅膜,或者要求采用一個(gè)更大,、更快速的風(fēng)扇產(chǎn)生氣流等,,所有這些都是不切實(shí)際的。

    對(duì)于開(kāi)關(guān)和同步整流MOSFET,,可以選擇一個(gè)允許的最高管芯結(jié)溫Tj(hot)作為迭代過(guò)程的出發(fā)點(diǎn),,多數(shù)MOSFET的數(shù)據(jù)手冊(cè)只規(guī)定了+25℃下的最大RDS(on),不過(guò)最近有些產(chǎn)品也提供了+125℃下的最大值,。MOSFET的RDS(on)隨著溫度的增高而增加,,典型溫度系數(shù)在0.35%/℃~0.5%/℃之間,如圖2所示,。如果拿不準(zhǔn),,可以用一個(gè)較為保守的溫度系數(shù)和MOSFET的+25℃規(guī)格(或+125℃規(guī)格),在選定的Tj(hot)下以最大RDS(on)作近似估算,,即

    RDS(on)hot=RDS(on)SPEC{1+0.005×〔Tj(hot)TSPEC〕}(1)

式中:RDS(on)SPEC為計(jì)算所用的MOSFET導(dǎo)通電阻,;

      TSPEC為規(guī)定RDS(on)SPEC時(shí)的溫度。

圖2    典型功率MOSFET導(dǎo)通電阻的溫度系數(shù)

〔在0.35%/℃(實(shí)線)至0.5%/℃虛線之間〕

    利用計(jì)算出的RDS(on)hot可以確定同步整流和開(kāi)關(guān)MOSFET的功耗,。為此,,將進(jìn)一步討論如何計(jì)算各個(gè)MOSFET在給定的管芯溫度下的功耗,以及完成迭代過(guò)程的后續(xù)步驟,,其整個(gè)過(guò)程詳述如圖1所示,。

1.1    同步整流的功耗

    除最輕負(fù)載外,同步整流MOSFET的漏,、源電壓在開(kāi)通和關(guān)閉過(guò)程中都會(huì)被續(xù)流二極管鉗位,。因此,,同步整流幾乎沒(méi)有開(kāi)關(guān)損耗,它的功耗PL只須考慮阻性損耗即可,。最壞情況下的損耗發(fā)生在同步整流工作在最大占空比時(shí),,也就是輸入電壓達(dá)到最低時(shí)。利用同步整流的RDS(on)和工作占空比,,通過(guò)歐姆定律可以近似計(jì)算出它的功耗,,即

    PL=〔×RDS(on)hot〕×(2)

1.2    開(kāi)關(guān)MOSFET的功耗

    開(kāi)關(guān)MOSFET的阻性損耗PR計(jì)算和同步整流非常相似,也要利用它的占空比(但不同于前者)和RDS(on)hot,,即

    PR=〔×RDS(on)hot〕×(3)

    開(kāi)關(guān)MOSFET的開(kāi)關(guān)損耗計(jì)算起來(lái)比較困難,,因?yàn)樗蕾?lài)于許多難以量化并且沒(méi)有規(guī)范的因素,這些因素同時(shí)影響到開(kāi)通和關(guān)斷過(guò)程,。為此,,可以首先用以下粗略的近似公式對(duì)某個(gè)MOSFET進(jìn)行評(píng)價(jià),然后通過(guò)實(shí)驗(yàn)對(duì)其性能進(jìn)行驗(yàn)證,,即

    PS=(4)

式中:Crss為MOSFET的反向傳輸電容(數(shù)據(jù)手冊(cè)中的一個(gè)參數(shù)),;

      fs為開(kāi)關(guān)頻率;

      Igatb為MOSFET的柵極驅(qū)動(dòng)器在MOSFET處于臨界導(dǎo)通(Vgs位于柵極充電曲線的平坦區(qū)域)時(shí)的吸收/源出電流,。

    若從成本因素考慮,,將選擇范圍縮小到特定的某一代MOSFET(不同代MOSFET的成本差別很大),就可以在這一代的器件中找到一個(gè)能夠使功率耗散最小的器件,。這個(gè)器件應(yīng)該具有均衡的阻性和開(kāi)關(guān)損耗,使用更小、更快的器件所增加的阻性損耗將超過(guò)它在開(kāi)關(guān)損耗方面的降低,,而使用更大〔而RDS(on)更低〕的器件所增加的開(kāi)關(guān)損耗將超過(guò)它對(duì)于阻性損耗的降低,。

    如果Vin是變化的,需要在Vin(max)Vin(min)下分別計(jì)算開(kāi)關(guān)MOSFET的功耗,。最壞情況可能會(huì)出現(xiàn)在最低或最高輸入電壓下,。該功耗是兩種因素之和:在Vin(min)時(shí)達(dá)到最高的阻性耗散(占空比較高),以及在Vin(max)時(shí)達(dá)到最高的開(kāi)關(guān)損耗。一個(gè)好的選擇應(yīng)該在Vin的兩種極端情況下具有大致相同的功耗,,并且在整個(gè)Vin范圍內(nèi)保持均衡的阻性和開(kāi)關(guān)損耗,。

    如果損耗在Vin(min)時(shí)明顯高出,則阻性損耗起主導(dǎo)作用,。這種情況下,,可以考慮用一個(gè)電流更大一點(diǎn)的MOSFET(或?qū)⒁粋€(gè)以上的MOSFET相并聯(lián))以降低RDS(on)。但如果在Vin(max)時(shí)損耗顯著高出,,則應(yīng)該考慮用電流小一點(diǎn)的MOSFET(如果是多管并聯(lián)的話,,或者去掉一個(gè)M0SFET),以便使其開(kāi)關(guān)速度更快一點(diǎn),。如果阻性和開(kāi)關(guān)損耗已達(dá)平衡,,但總功耗仍然過(guò)高,,也有多種辦法可以解決:

    ——改變或重新定義輸入電壓范圍;

    ——降低開(kāi)關(guān)頻率以減小開(kāi)關(guān)損耗,,或選用RDS(on)更低的MOSFET,;

    ——增加?xùn)艠O驅(qū)動(dòng)電流,有可能降低開(kāi)關(guān)損耗,;

    ——采用一個(gè)技術(shù)改進(jìn)的MOSFET,,以便同時(shí)獲得更快的開(kāi)關(guān)速度、更低的RDS(on)和更低的柵極電阻,。

    需要指正的是,脫離某個(gè)給定的條件對(duì)MOSFET的尺寸作更精細(xì)的調(diào)整是不大可能的,,因?yàn)槠骷倪x擇范圍是有限的。選擇的底線是MOSFET在最壞情況下的功耗必須能夠被耗散掉,。

2    關(guān)于熱阻

    按照?qǐng)D1所示,,繼續(xù)進(jìn)行迭代過(guò)程的下一步,以便尋找合適的MOSFET來(lái)作為同步整流和開(kāi)關(guān)MOSFET,。這一步是要計(jì)算每個(gè)MOSFET周?chē)沫h(huán)境溫度,,在這個(gè)溫度下,MOSFET結(jié)溫將達(dá)到我們的假定值,。為此,,首先需要確定每個(gè)MOSFET結(jié)到環(huán)境的熱阻θJA

    熱阻的估算可能會(huì)比較困難,。單一器件在一個(gè)簡(jiǎn)單的印刷板上的θJA的測(cè)算相對(duì)容易一些,,而要在一個(gè)系統(tǒng)內(nèi)去預(yù)測(cè)實(shí)際電源的熱性能是很困難的,因?yàn)?,那里有許多熱源在爭(zhēng)奪有限的散熱通道,。如果有多個(gè)MOSFET被并聯(lián)使用,其整體熱阻的計(jì)算方法,,和計(jì)算兩個(gè)以上并聯(lián)電阻的等效電阻一樣,。

    我們可以從MOSFET的θJA規(guī)格開(kāi)始。對(duì)于單一管芯,、8引腳封裝的MOSFET來(lái)講,,θJA通常接近于62℃/W。其他類(lèi)型的封裝,,有些帶有散熱片或暴露的導(dǎo)熱片,,其熱阻一般會(huì)在40℃/W至50℃/W(見(jiàn)表1所列)??梢杂孟旅娴墓接?jì)算MOSFET的管芯相對(duì)于環(huán)境的溫升Tj(rise),,即

    Tj(rise)=PL×θJA(5)

    接下來(lái),計(jì)算導(dǎo)致管芯達(dá)到預(yù)定Tj(hot)時(shí)的環(huán)境溫度Tambient,, 即

表1    MOSFET封裝的典型熱阻

封裝 θJA/(℃/W)

最小引線面積

θJA/(℃/W)

敷銅4.82g/cm2

θJA/(℃/W)
SOT23(熱增強(qiáng)型) 270 200 75
SOT89 160 70 35
SOT223 110 45 15
8引腳μMAX/Micro8(熱增強(qiáng)型) 160 70 35
8引腳TSSOP 200 100 45
8引腳SO(熱增強(qiáng)型) 125 62.5 25
D-PAK 110 50 3
D2-PAK 70 40 2

說(shuō)明:由于封裝的機(jī)械特性,、管芯尺寸和安裝及綁定方法等原因,,所以同樣封裝類(lèi)型的不用器件,以及不同制造商出品的相似封裝的熱阻也各不相同,,為此,,應(yīng)仔細(xì)考慮MOSFET數(shù)據(jù)手冊(cè)中的熱信息。

 

 

    Tambient=Tj(hot)Tj(rise)(6)

    如果計(jì)算出的θJA低于機(jī)殼的最大額定環(huán)境溫度,,必須采用下列一條或多條措施:

    ——升高預(yù)定的Tj(hot),,但不要超出數(shù)據(jù)手冊(cè)規(guī)定的最大值;

    ——選擇更合適的MOSFET以降低其功耗,;

    ——通過(guò)增加氣流或MOSFET周?chē)你~膜降低θJA,。

    再重算Tambient(采用速算表可以簡(jiǎn)化計(jì)算過(guò)程,經(jīng)過(guò)多次反復(fù)方可選出一個(gè)可接受的設(shè)計(jì)),。而表1為MOSFET封裝的典型熱阻,。

    如果計(jì)算出的Tambient高出機(jī)殼的最大額定環(huán)境溫度很多,可以采取下列一條或全部措施:

    ——降低預(yù)定的Tj(hot),;

    ——減小專(zhuān)用于MOSFET散熱的銅膜面積,;

    ——采用更廉價(jià)的MOSFET。

    這些步驟是可選的,,因?yàn)樵诖饲闆r下MOSFET不會(huì)因過(guò)熱而損壞,。不過(guò),通過(guò)這些步驟只要保證Tambient高出機(jī)殼最高溫度一定裕量,,便可以降低線路板面積和成本,。

    上述計(jì)算過(guò)程中最大的誤差源來(lái)自于θ JA。應(yīng)該仔細(xì)閱讀數(shù)據(jù)手冊(cè)中有關(guān)θJA規(guī)格的所有注釋,。一般規(guī)范都假定器件安裝在4.82g/cm2的銅膜上,。銅膜耗散了大部分的功率,不同數(shù)量的銅膜θ JA差別很大,。例如,,帶有4.82g/cm2銅膜的D-Pak封裝的θ JA會(huì)達(dá)到50℃/W,。但是如果只將銅膜鋪設(shè)在引腳的下面,,θJA將高出兩倍(見(jiàn)表1)。如果將多個(gè)MOSFET并聯(lián)使用,,θ JA主要取決于它們所安裝的銅膜面積,。兩個(gè)器件的等效θ JA可以是單個(gè)器件的一半,但必須同時(shí)加倍銅膜面積,。也就是說(shuō),,增加一個(gè)并聯(lián)的MOSFET而不增加銅膜的話,可以使RDS(on)減半但不會(huì)改變θ JA很多,。最后,,θ JA規(guī)范通常都假定沒(méi)有任何其它器件向銅膜的散熱區(qū)傳遞熱量,。但在大電流情況下,功率通路上的每個(gè)元器件,,甚至是印刷板線條都會(huì)產(chǎn)生熱量,。為了避免MOSFET過(guò)熱,須仔細(xì)估算實(shí)際情況下的θ JA,,并采取下列措施:

    ——仔細(xì)研究選定MOSFET現(xiàn)有的熱性能方面的信息,;

    ——考察是否有足夠的空間,以便設(shè)置更多的銅膜,、散熱器和其它器件,;

    ——確定是否有可能增加氣流;

    ——觀察一下在假定的散熱路徑上,,是否有其它顯著散熱的器件,;

    ——估計(jì)一下來(lái)自周?chē)蚩臻g的過(guò)剩熱量或冷量。

3    結(jié)語(yǔ)

    熱管理是大電流便攜式DC/DC" title="DC/DC">DC/DC設(shè)計(jì)中難度較大的領(lǐng)域之一,。這種難度迫使我們有必要采用上述迭代流程,。盡管該過(guò)程能夠引領(lǐng)熱性能設(shè)計(jì)者靠近最佳設(shè)計(jì),但是還必須通過(guò)實(shí)驗(yàn)來(lái)最終確定設(shè)計(jì)流程是否足夠精確,。應(yīng)計(jì)算MOSFET的熱性能,,為它們提供足夠的耗散途徑,然后在實(shí)驗(yàn)室中檢驗(yàn)這些計(jì)算,,這樣有助于獲得一個(gè)耐用而安全的熱設(shè)計(jì),。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。