《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 半導(dǎo)體式光纖溫度傳感器的建模、仿真與實(shí)驗(yàn)
半導(dǎo)體式光纖溫度傳感器的建模,、仿真與實(shí)驗(yàn)
摘要: 光纖溫度檢測(cè)技術(shù)是近些年發(fā)展起來(lái)的一項(xiàng)新技術(shù),,由于光纖本身具有電絕緣性好,、不受電磁干擾,、無(wú)火花,、能在易燃易爆的環(huán)境中使用等優(yōu)點(diǎn)而越來(lái)越受到人們的重視,,各種光纖溫度傳感器發(fā)展極為迅速,。目前研究的光纖溫度傳感器主要利用相位調(diào)制,、熱輻射探測(cè)、熒光衰變,、半導(dǎo)體吸收,、光纖光柵等原理。其中半導(dǎo)體吸收式光纖溫度傳感器作為一種強(qiáng)度調(diào)制的傳光型光纖傳感器,,除了具有光纖傳感器的一般優(yōu)點(diǎn)之外,,還具有成本低、結(jié)構(gòu)簡(jiǎn)單,、可靠性高等優(yōu)點(diǎn),,非常適合于輸電設(shè)備和石油井下等現(xiàn)場(chǎng)的溫度監(jiān)測(cè),近年來(lái)獲得了廣泛的研究,。但是目前的研究還存在一些問(wèn)題,,如系統(tǒng)模型不完善,基礎(chǔ)理論尚不系統(tǒng),,產(chǎn)品化困難等,。本文對(duì)這種傳感器進(jìn)行了詳細(xì)研究,建立了系統(tǒng)的數(shù)學(xué)模型,,并通過(guò)仿真和實(shí)驗(yàn)對(duì)系統(tǒng)特性和實(shí)際應(yīng)用的難點(diǎn)進(jìn)行了分析,。
Abstract:
Key words :

1 引言
    光纖溫度檢測(cè)技術(shù)是近些年發(fā)展起來(lái)的一項(xiàng)新技術(shù),由于光纖本身具有電絕緣性好,、不受電磁干擾,、無(wú)火花、能在易燃易爆的環(huán)境中使用等優(yōu)點(diǎn)而越來(lái)越受到人們的重視,,各種光纖溫度傳感器發(fā)展極為迅速,。目前研究的光纖溫度傳感器主要利用相位調(diào)制、熱輻射探測(cè),、熒光衰變,、半導(dǎo)體吸收、光纖光柵等原理,。其中半導(dǎo)體吸收式光纖溫度傳感器作為一種強(qiáng)度調(diào)制的傳光型光纖傳感器,,除了具有光纖傳感器的一般優(yōu)點(diǎn)之外,還具有成本低,、結(jié)構(gòu)簡(jiǎn)單,、可靠性高等優(yōu)點(diǎn),,非常適合于輸電設(shè)備和石油井下等現(xiàn)場(chǎng)的溫度監(jiān)測(cè),近年來(lái)獲得了廣泛的研究,。但是目前的研究還存在一些問(wèn)題,,如系統(tǒng)模型不完善,基礎(chǔ)理論尚不系統(tǒng),,產(chǎn)品化困難等,。本文對(duì)這種傳感器進(jìn)行了詳細(xì)研究,建立了系統(tǒng)的數(shù)學(xué)模型" title="數(shù)學(xué)模型">數(shù)學(xué)模型,,并通過(guò)仿真和實(shí)驗(yàn)對(duì)系統(tǒng)特性和實(shí)際應(yīng)用" title="實(shí)際應(yīng)用">實(shí)際應(yīng)用的難點(diǎn)進(jìn)行了分析,。

2 測(cè)溫" title="測(cè)溫">測(cè)溫原理
    當(dāng)一定波長(zhǎng)的光通過(guò)半導(dǎo)體材料時(shí),主要引起的吸收是本征" title="本征">本征吸收,,即電子從價(jià)帶激發(fā)到導(dǎo)帶引起的吸收,。對(duì)直接躍遷型材料,能夠引起這種吸收的光子能量hv必須大于或等于材料的禁帶寬度Eg,,即

  
    式中,,h為普朗克常數(shù):v是頻率。從式(1)可看出,,本征吸收光譜在低頻方向必然存在一個(gè)頻率界限vg,,當(dāng)頻率低于vg時(shí)不可能產(chǎn)生本征吸收。一定的頻率vg對(duì)應(yīng)一個(gè)特定的波長(zhǎng),,λg=c/vg,,稱為本征吸收波長(zhǎng)。

    根據(jù)固體物理理論,,直接躍遷型半導(dǎo)體材料GaAs的吸收波長(zhǎng)是隨著溫度的變化而變化的,。圖1所示是GaAs的透射率" title="透射率">透射率隨溫度變化的示意圖。當(dāng)溫度升高時(shí),,本征吸收波長(zhǎng)變大,,透射率曲線向長(zhǎng)波長(zhǎng)方向移動(dòng),但形狀不變,;反之,,當(dāng)溫度降低時(shí),本征吸收波長(zhǎng)變小,,透射率曲線保持形狀不變而向短波長(zhǎng)方向移動(dòng),。當(dāng)光源的光譜輻射強(qiáng)度不變時(shí),GaAs總透射率就隨其溫度發(fā)生變化,,溫度越高,總透射率越低,。通過(guò)測(cè)量透過(guò)GaAs的光的強(qiáng)弱即可達(dá)到測(cè)溫的目的,。通過(guò)研磨拋光將 GaAs加工成很薄的薄片,,其入射光和出射光用光纖耦合,這就是半導(dǎo)體吸收式光纖溫度傳感器的基本原理,。

3 系統(tǒng)建模
    半導(dǎo)體吸收式光纖溫度傳感器系統(tǒng)主要由光源驅(qū)動(dòng),、光源、入射和出射光纖,、探頭,、光電轉(zhuǎn)換器以及輸出顯示等部分構(gòu)成,如圖2所示,。

    GaAs是一種典型的直接躍遷型材料,,它的透射率曲線如圖1和圖3所示。由上文關(guān)于測(cè)溫原理的分析可知,,透射率T是一個(gè)關(guān)于溫度t和透射光波長(zhǎng)λ的函數(shù),。根據(jù)固體物理理論和電磁學(xué)理論能得到它的具體表達(dá)式。但是這樣得到的透射率T(λ,,t)是一個(gè)很復(fù)雜的式子,,實(shí)際應(yīng)用很不方便??梢愿鶕?jù)曲線的形狀將其近似為如圖3所示的3段直線的組合,。第1段是λ<λT,T=0,;第2段是λT<λ<λT+△,,這時(shí)T急劇上升;第三段是λ>λT+ △,,這時(shí)近似一條緩變的直線,。3條直線的交點(diǎn)a、b,、c的坐標(biāo)值分別是a(λT,,0),b(λT+△,,Tb),,c(1000,Tc),,由此可以求出曲線的近似表達(dá)式為:

溫度的單位為K,。
    在本系統(tǒng),我們采用了厚度為120 μm的GaAs材料,。如圖3所示,,通過(guò)其解析式得到原始曲線,再利用上述辦法可將其透射率曲線近似為三段直線,,表達(dá)式如下:

 

       一般采用能夠覆蓋吸收波長(zhǎng)λT的變化范圍且具有一定的光譜寬度,,體積小,、耗電少的的發(fā)光二極管做光源,其光譜近似于高斯分布:

  
    式中,,λ0是光源峰值波長(zhǎng),,△λ是光源譜寬,I0是最大光譜輻射強(qiáng)度,。
    由式(3)可計(jì)算得出,,當(dāng)被測(cè)溫度從0~200℃變化時(shí),120 μm的GaAs材料的本征吸收波長(zhǎng)從865nm變到925nm,,因此本系統(tǒng)中選用峰值波長(zhǎng)為880nm,,譜寬為100 nm的GaAlAs發(fā)光二極管。
    光電探測(cè)器" title="光電探測(cè)器">光電探測(cè)器的選擇要使其光譜響應(yīng)度R(λ)與光源的峰值波長(zhǎng)相對(duì)應(yīng),,最好使其峰值響應(yīng)度對(duì)應(yīng)的波長(zhǎng)與光源的峰值波長(zhǎng)一致,,以獲得最大的輸出。為此,,選擇硅 PIN光電二極管作為光電探測(cè)器,,它的性能穩(wěn)定,價(jià)格便宜,,使用簡(jiǎn)單,,尤其是在800~900nm波段光電轉(zhuǎn)換效率最高,與所選光源LED的工作波段一致,。
    光電二極管是基于光生伏特效應(yīng)進(jìn)行光電轉(zhuǎn)換的,,它的光譜響應(yīng)曲線具有指數(shù)形式,用x2分布函數(shù)來(lái)表示,,為此選擇兩個(gè)正態(tài)分布之和作為其數(shù)學(xué)表達(dá)式:
    式中,,λ0、△λ,、λ1,、λ2、σ1,、σ2均為常數(shù),,單位nm,溫度t的單位是K,。用常溫20℃,,即293KH寸的輸出J為基值,對(duì)輸出進(jìn)行歸一化,,則

   

5 系統(tǒng)的實(shí)驗(yàn)研究
5.1 系統(tǒng)實(shí)驗(yàn)平臺(tái)的搭建
    實(shí)驗(yàn)平臺(tái)采用了圖2所示結(jié)構(gòu),,選用的GaAs片長(zhǎng)寬約為0.5cm,厚度為120 μm,并且表面采用鍍膜處理,;光源采用峰值波長(zhǎng)為880nm,,譜寬為100nm的GaAlAs發(fā)光二極管:采用λ1=800nm,,λ2=900nm,,σ1 =200nm,σ1=100nm,,R1=1.78的光電二極管做光電探測(cè)器,;光纖為直徑1nm的大芯徑塑料光纖,光纖與各元件的連接均采用中心對(duì)準(zhǔn)的接頭加固,。探頭采用圖5所示結(jié)構(gòu),,銅塞將GaAs片垂直固定在探頭內(nèi),并起導(dǎo)熱作用,,入射和出射光纖垂直于GaAs片,,并留有一定間隙,以防高溫變形,。系統(tǒng)使用溫度可調(diào)的變溫箱做溫度場(chǎng),,使用精確度為0.01℃的熱電偶溫度計(jì)同步測(cè)量溫度,使用高精度數(shù)字電壓表測(cè)量輸出,。進(jìn)行的實(shí)驗(yàn)主要有加溫實(shí)驗(yàn),、降溫實(shí)驗(yàn)、重復(fù)性實(shí)驗(yàn),、響應(yīng)時(shí)間實(shí)驗(yàn)和抗干擾實(shí)驗(yàn)等,。

    從實(shí)驗(yàn)過(guò)程可以看出,系統(tǒng)的靈敏度較高,,精度達(dá)到1K,,分辨率為0.1K,響應(yīng)時(shí)問(wèn)要明顯快于同步測(cè)溫的熱電偶,,比傳統(tǒng)熱電偶式測(cè)溫儀更適合要求快響應(yīng)時(shí)間的溫度測(cè)量場(chǎng)合,。

5.3 實(shí)驗(yàn)分析
    (1)半導(dǎo)體吸收式溫度傳感器在理論上完全可以勝任電力設(shè)備等特殊環(huán)境的現(xiàn)場(chǎng)測(cè)量要求,具有精度高,、響應(yīng)快,、抗電磁干擾,無(wú)火花等優(yōu)點(diǎn),。
    (2)實(shí)驗(yàn)過(guò)程中也發(fā)現(xiàn)了一些實(shí)際問(wèn)題,。首先系統(tǒng)對(duì)外界環(huán)境的影響非常敏感,任何振動(dòng),、光纖的移位和環(huán)境光的變化都會(huì)對(duì)測(cè)量結(jié)果帶來(lái)影響,,對(duì)實(shí)驗(yàn)條件要求比較嚴(yán)格。這可能是系統(tǒng)實(shí)用化的主要障礙。其次,,輸出信號(hào)比較弱,,對(duì)檢測(cè)帶來(lái)了不便。還有塑料光纖的熱形變問(wèn)題,,盡管在設(shè)計(jì)的探頭中光纖與半導(dǎo)體薄片留有一定縫隙,,但當(dāng)溫度升到373K以上時(shí),光纖還是產(chǎn)生了熱形變,,引起衰減異常,。更換石英光纖后也不理想,因?yàn)槠胀ǖ耐ㄐ攀⒐饫w芯徑太小,,耦合問(wèn)題難以解決,,傳輸效率低;大芯徑石英光纖韌性差,,難以實(shí)際應(yīng)用,。最后,自行設(shè)計(jì)的探頭還存在一定缺陷,,半導(dǎo)體薄片與光纖的耦合并不理想,,垂直和對(duì)準(zhǔn)都不好控制。


6 結(jié)論
    半導(dǎo)體吸收式溫度傳感系統(tǒng)非常適合于電氣設(shè)備等特殊環(huán)境的現(xiàn)場(chǎng)溫度監(jiān)測(cè),。通過(guò)建立系統(tǒng)的數(shù)學(xué)模型和 matlab仿真,,得到了較完善的理論體系和元件選取原則;通過(guò)實(shí)驗(yàn)一方面肯定了數(shù)學(xué)模型的可行性,,另一方面也揭示了實(shí)現(xiàn)實(shí)用化產(chǎn)品存在的困難,,一些可能的解決辦法是:(1)設(shè)置參考光路,并對(duì)入射光進(jìn)行調(diào)制,,減少環(huán)境因素的影響,;(2)設(shè)計(jì)低噪聲低溫漂的前置放大電路,以增強(qiáng)輸出信號(hào)的強(qiáng)度,;(3)采用石英光纖束做為介質(zhì),,既解決高溫形變問(wèn)題,又可提高耦合效率,;(4)設(shè)計(jì)新的探頭結(jié)構(gòu),,提高耦合效率和抗干擾能力??偟膩?lái)看,,這種傳感器的應(yīng)用前景還是十分廣闊的。

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。