中心議題:
- 開關(guān)電源的工作原理、結(jié)構(gòu)及其特性
- 中小功率綠色開關(guān)電源的設(shè)計與研究
解決方案:
- 利用功率因數(shù)校正電路
- 利用功率隔離變換器
- 采用同步整流電路
中小功率開關(guān)電源以其諸多優(yōu)良的性能,,在測控儀器儀表、通信設(shè)備,、學(xué)習(xí)與娛樂等諸多電子產(chǎn)品中得到廣泛的應(yīng)用,。隨著環(huán)境和能源問題日益突出,人們對電子產(chǎn)品的環(huán)保要求不斷提高,,對電子產(chǎn)品的能源效率更加關(guān)注,。設(shè)計無污染、低功耗,、高效率的綠色模式電源已成為開關(guān)電源技術(shù)研究的熱點(diǎn),。
本文研究一種中小功率開關(guān)電源,應(yīng)用過渡模式有源功率因數(shù)校正,、準(zhǔn)諧振變頻功率隔離變換控制和同步整流等多種先進(jìn)的電源控制技術(shù),,以實現(xiàn)綠色開關(guān)電源設(shè)計的目的。
1 系統(tǒng)結(jié)構(gòu)與工作原理
所研究的開關(guān)電源結(jié)構(gòu)如圖1所示,,采用兩級PFC結(jié)構(gòu),,由PFC預(yù)變換器、隔離變換器和同步整流電路組成的DC/Dc變換器以及檢測與保護(hù)電路組成,。交流電壓經(jīng)整流后先輸入到PFC預(yù)變換器進(jìn)行功率因數(shù)校正變換,,再由電源控制電路控制隔離變換器,將直流電壓轉(zhuǎn)換成高頻交流脈沖電壓,,此脈沖電壓經(jīng)同步整流器整流,、濾波電路濾波后,得到所需的直流,。
圖1 開關(guān)電源結(jié)構(gòu)框圖
由于整流電路中二極管等非線性元件的作用,,導(dǎo)致輸入的交流電壓雖然是正弦波,但輸入的交流電流
波形嚴(yán)重畸變,,降低了輸入電路的功率因數(shù),,增加了線路電能損耗,而且還會產(chǎn)生大量諧波污染電網(wǎng),。解決上述問題的關(guān)鍵是改善輸入電流波形,。這里采用boost有源功率因數(shù)校正技術(shù),由boost變換器和以UCC38050為中心的PFC控制電路組成功率因數(shù)校正級,,通過對電感電流的控制,,在交流輸入端產(chǎn)生
一個跟蹤正弦輸入電壓波形的正弦電流,實現(xiàn)功率因數(shù)校正,,使輸入電路功率因數(shù)接近于l,。電流波形
校正原理如圖2所示,,電感電流波形高頻脈動且臨界連續(xù),通過相應(yīng)的控制,,在半個工頻周期內(nèi),,使電
感中電流的平均值跟隨全波整流電壓基準(zhǔn)值,其包絡(luò)線呈正弦波形,,且相位與電壓相同,。圖中,iL為
電感電流,,iA為電感平均電流,,ip為電感電流峰值包絡(luò)線。
- 如何為汽車電子系統(tǒng)設(shè)計成本低廉的電源
- 新單相正弦車載電源型設(shè)計
- Corom Hz:榮興(TE)推出Corom HZ系列電源濾波器適合醫(yī)療領(lǐng)域應(yīng)用
- 開關(guān)電源保護(hù)電路的研究
- 直流電子負(fù)載測試方法研究
- 開關(guān)電源原理
- 開關(guān)電源電路圖
- 開關(guān)電源原理與維修視頻
- 開關(guān)電源原理與維修
- 開關(guān)電源設(shè)計寶典下載
圖2 電感電流
UCC38050為過渡模式PFC控制器,,功耗低,,工作電流僅1.5mA.PWM開關(guān)頻率由自激振蕩產(chǎn)生而且頻率可變,不存在Boost二極管反向恢復(fù)過程,,減少了反向恢復(fù)損耗,,非常適合于中小功率綠色開關(guān)電源設(shè)計。
降低開關(guān)電源功耗的主要途徑是降低開關(guān)損耗和控制電路功耗,。減少控制電路功耗可通過選擇功耗低,、功能強(qiáng)、所需外部元件少的控制芯片及簡化外部控制電路來實現(xiàn),。這里主要討論降低開關(guān)損耗的措施,。許多電子產(chǎn)品在使用中常處于輕載或待機(jī)狀態(tài),而開關(guān)電源*率開關(guān)管的開關(guān)頻率都很高,,當(dāng)開關(guān)電源工作在輕載或待機(jī)狀態(tài)下時,,開關(guān)損耗成為主要損耗,相對損耗大大增加,,效率降低,。降低輕載損耗的有效方法是在輕載狀態(tài)下降低開關(guān)電源的開關(guān)頻率,從而使輕載效率保持與滿載時相同,。圖1中,,隔離變換控制電路采用準(zhǔn)諧振電源控制器FA5531P及外圍元件構(gòu)成。FA5531P的開關(guān)頻率不是由他激振蕩器決定的固定開關(guān)頻率,,而是由自激振蕩決定,。芯片在正常負(fù)載時保持固定頻率的準(zhǔn)諧振開關(guān)狀態(tài),輕載時自動降低開關(guān)頻率以減少空載損耗,,最低開關(guān)頻率可降至1KHz,,F(xiàn)A5531P開關(guān)頻率與輸出功率關(guān)系如圖3所示。FA5531P的另一個特點(diǎn)是具有內(nèi)部啟動電路,從而也降低了待機(jī)功耗,。FA5531P自身功耗很低,,工作電流僅1.5mA,集成度高,,只需極少的外部元件,。
開關(guān)器件的寄生電容是引起開關(guān)損耗的重要因素。功率MOSFET的阻斷電壓較大,,開通過程中,,因寄生電容的存在而引入的損耗也大。因此設(shè)計了谷底檢測電路探測功率開關(guān)管的電壓谷底,,以控制開關(guān)管的零電壓開通,,減小寄生電容引入的損耗,,提高轉(zhuǎn)換效率,。
圖3 開關(guān)頻率/負(fù)載特性
整流采用同步整流技術(shù),與快恢復(fù)二極管整流比較,,同步整流采用通態(tài)電阻極低的專用功率MOSFET,,同步控制功率MOSFET零電壓開通,不但功耗低,,還可降低噪音,。由于電流越小功率MOSFET導(dǎo)通壓降越低,這一特性對于改善輕載效率尤為有效,。同步整流控制采用同步整流控制器控制,,采用在零電流時自動關(guān)斷外部功率開關(guān)的軟開關(guān)技術(shù),減少了開關(guān)損耗,,不需要另外的待機(jī)模式就可在控制運(yùn)行時保持高效率,。具有高精度內(nèi)部參考電壓,內(nèi)部集成了輸出電壓和輸出電流調(diào)節(jié)電路,,可以方便地對輸出電壓或輸出電流進(jìn)行反饋控制,。作為一款綠色芯片,不但自身功耗低(最大功耗不超過0.5W),,而且從空載到滿載都具有高的變換效率,。
圖4 功率因數(shù)校正電路
2 開關(guān)電源電路設(shè)計
2.1 功率因數(shù)校正電路
功率因數(shù)校正電路原理如圖4所示。電路中,,電感L,、功率MOS開關(guān)管Vo、二極管Do和電容Co組成Boost變換器,。電阻分壓器RAc1和RAc2對輸入電壓波形取樣,,獲得輸入電壓前饋信號,作為控制芯片UCC38050內(nèi)部乘法器的一個輸入,與電源反饋信號一起生成電感電流參考信號,。電阻Rzc將電感電流過零信號輸入芯片,,以控制開關(guān)管零電流開通。電阻Rs1檢測開關(guān)管電流,,輸出電壓經(jīng)Ro1和Ro2分壓后反饋給芯片,。這些信號輸入芯片后,經(jīng)過UCC38050內(nèi)部運(yùn)算與控制,,形成PWM控制信號,,控制開關(guān)管通斷,使電流波形跟蹤電壓波形,,實現(xiàn)功率因數(shù)校正,。
2.2 功率隔離變換器
功率隔離變換器電路如圖5所示,由控制電路和反激式變換器組成,。圖中,,變壓器輔助繞組LZ、電阻RZCD,、電容CzcD組成谷底探測電路,,為控制芯片F(xiàn)A5531提供谷底檢測信號。光電耦合器N1次級將輸出電壓反饋信號輸入控制芯片,。電路啟動后,,F(xiàn)A5531輸出驅(qū)動信號使V1導(dǎo)通,V1電流上升,,此電流由Rs檢測輸入到控制芯片的IS引腳,,與由反饋輸入FB引腳的電壓決定的參考電壓進(jìn)行比較,達(dá)到參考電壓時,,V1關(guān)斷,,變壓器繞組電壓反相,變壓器初級電感向次級負(fù)載饋送能量,。當(dāng)向次級饋送能量過程結(jié)束時,,次級電流下降到零。變壓器漏感與開關(guān)管寄生電容Cd構(gòu)成了諧振電路,,變壓器輔助繞組感應(yīng)此諧振電路的諧振電壓,,并輸入到FA5531P的ZCD引腳。當(dāng)次級電流下降到零時,,諧振電路的諧振電壓迅速下降,,輔助繞組的感應(yīng)電壓也迅速下降,當(dāng)ZCD引腳上的電壓降至谷底探測閾值時,,F(xiàn)A5531P驅(qū)動輸出使V1重新導(dǎo)通,。由于電阻RzcD,、電容CzcD會引入延時,選擇合適的RzcD,、CzcD值,,就可實現(xiàn)V1零電壓開通。
圖5 隔離變換電路
2.3 同步整流電路
采用TEAl761T的同步整流電路如圖6所示,。同步信號SRSENSE直接取自高頻變壓器次級,,R3是輸出電流取樣電阻,通過選擇合適的R3的阻值,,可控制最大輸出電流,。TEA1761T具有欠電壓鎖定和啟動功能,D2為TEA1761T提供電源,,同時檢測輸出電壓,,當(dāng)Vcc引腳電壓高于8.6V,TEA1761T激活同步整流電路和輸出電壓與輸出電流檢測電路,。當(dāng)電壓低于8.1v時,,則進(jìn)入欠電壓鎖定狀態(tài),驅(qū)動輸出保持低電平,,光耦反饋輸出被封鎖,。
圖6 同步整流電路
分路整流器7*31,、光電耦合器N1和分壓電阻等組成輸出電壓反饋回路,,將開關(guān)電源次級輸出電壓與參考電壓的偏差反饋給初級的控制電路,調(diào)節(jié)隔離變換器功率開關(guān)占空比,,穩(wěn)定開關(guān)電源輸出電壓,。7*31提供高精度基準(zhǔn)電壓,分壓電阻對輸出電壓采樣,,與基準(zhǔn)電壓比較,,其偏差被放大并改變光電耦合器輸出,實現(xiàn)反饋,。用7*31取代復(fù)雜的誤差放大電路,,簡化了反饋電路結(jié)構(gòu)。
系統(tǒng)利用芯片具有多種保護(hù)功能,,設(shè)計了過電壓保護(hù),、欠電壓鎖定、過電流保護(hù),、過熱保護(hù)等保護(hù)電路以提高系統(tǒng)的可靠性,,具體電路從略。
3 測試結(jié)果
對所設(shè)計的開關(guān)電源樣機(jī)進(jìn)行了測試,,樣機(jī)額定輸出電壓24V,,額定輸出電流3A。測試中負(fù)載電阻10Ω,當(dāng)輸入電壓范圍90~265V內(nèi)時,,功率因數(shù)λ≥0.985,,電源效率η≥91.5%,THD≤4.25%,。表1是待機(jī)與輕載時的功耗測試結(jié)果,。
4 結(jié)束語
在所設(shè)計開關(guān)電源中,所選用的芯片功耗低,、功能強(qiáng),,所需外部元件少,簡化了電路結(jié)構(gòu),。系統(tǒng)中綜合了多種先進(jìn)的電源控制技術(shù),,從各個環(huán)節(jié)降低開關(guān)電源損耗,保持從輕載到滿載都具有高的系統(tǒng)效率,。采用的兩級變換器分別有自己的控制環(huán)節(jié),,所以既能保持穩(wěn)定的輸出電壓,又有良好的動態(tài)性能,,可滿足對電源性能要求較高的應(yīng)用場合,,如用作各種自動測控儀器的電源。