《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 電動自行車控制器MOSFET驅(qū)動電路的設(shè)計
電動自行車控制器MOSFET驅(qū)動電路的設(shè)計
摘要: 電動自行車具有環(huán)保節(jié)能,,價格合適,,無噪聲,便利等特點,,因此,,電動自行車成為當(dāng)今社會人們主要的代步工具,。與此同時,消費者和商家對整車的質(zhì)量及可靠性要求也越來越高,。作為整車四大件之一的控制器的可靠性顯得尤為重要,。功率MOSFET以及相關(guān)的驅(qū)動電路的設(shè)計直接與控制器的可靠性緊密相關(guān),尤其是在續(xù)流側(cè),,MOSFET的驅(qū)動電路設(shè)計不當(dāng),,續(xù)流側(cè) MOSFET很容易損壞,,因此本文就如何測量、分析與調(diào)整控制器的MOSFET驅(qū)動線路來提高MOSFET的可靠性作一些研究,,以便能夠為設(shè)計人員在設(shè)計產(chǎn)品時作一些參考,。
Abstract:
Key words :

 

電動自行車具有環(huán)保節(jié)能,價格合適,,無噪聲,,便利等特點,因此,,電動自行車成為當(dāng)今社會人們主要的代步工具,。與此同時,消費者和商家對整車的質(zhì)量及可靠性要求也越來越高,。作為整車四大件之一的控制器的可靠性顯得尤為重要,。功率MOSFET以及相關(guān)的驅(qū)動電路的設(shè)計直接與控制器的可靠性緊密相關(guān),尤其是在續(xù)流側(cè),,MOSFET的驅(qū)動電路設(shè)計不當(dāng),,續(xù)流側(cè) MOSFET很容易損壞,因此本文就如何測量,、分析與調(diào)整控制器的MOSFET驅(qū)動線路來提高MOSFET的可靠性作一些研究,,以便能夠為設(shè)計人員在設(shè)計產(chǎn)品時作一些參考。

1 MOSFET開關(guān)過程及MOSFET參數(shù)模型

1.1 MOSFET開通過程

MOSFET開通過程中的波形見圖1所示,,其開通的過程可分為四個階段:

階段A,、t0¬—t1:門極電壓Vgs由0V逐漸上升至Vth,在此期間內(nèi)MOSFET關(guān)閉,,Vds不變,,Id=0A。

階段B,、t1—t2:門極電壓Vgs由Vth上升至平臺電壓Vp,,門極電壓為Cgs充電。在此期間內(nèi)MOSFET開始導(dǎo)通并進入飽和狀態(tài),,Vds基本保持不變,,Id由0上升至Id(max)。

階段C,、t2—t3:門極電壓Vgs保持不變,,門極電壓為Cgd充電。在此期間內(nèi)MOSFET仍處于飽和狀態(tài),,Vds迅速下降,,Id保持不變。

階段D、t3—t4:門極電壓Vgs由Vp繼續(xù)上升,,在此期間內(nèi)MOSFET退出飽和狀態(tài)進入完全導(dǎo)通狀態(tài),。
MOSFET關(guān)斷時波形與開通時相反,在此不再敘述,。

1.2 MOSFET寄生參數(shù)

MOSFET寄生參數(shù)模型如圖2所示,。由于MOSFET的結(jié)構(gòu)、引線和封裝的影響,,在MOSFET制作完成后,,其各引腳間存在PN結(jié)寄生電容和寄生電感,引腳上存在引線電感,。由于源極的引線較長,,Ls一般要比Ld大。

因此,,我們在實際的開關(guān)應(yīng)用中應(yīng)特別注意寄生電容和引線電感對開關(guān)波形的影響,,特別是在負載為電感性負載時更應(yīng)注意。MOSFET的輸入電容,、反向傳輸電容和輸出電容分別表示如下:

Ciss=Cgs+Cgd

Crss=Cgd

Coss=Cgd+Cds

2 兩種常見的MOSFET驅(qū)動電路

2.1由分立器件組成的驅(qū)動電路

由分立器件組成的驅(qū)動電路((如圖3所示),,驅(qū)動電路工作原理如下:

A.當(dāng)HS為高電平時,Q7,、Q4導(dǎo)通,,Q6關(guān)閉,電容C4上的電壓(約14V)經(jīng)過Q4,、D3,、R6加到Q5的柵極,使Q5導(dǎo)通,。在導(dǎo)通期間,,Q5的源極電壓(Phase)接近電源電壓Vdc,所以電容兩端的電壓隨著Phase電壓一起浮動,,電容C4亦稱為自舉電容,。Q5靠C4兩端的電壓來維持導(dǎo)通。

B. 當(dāng)HS為低電平時,,Q7,、Q4關(guān)閉,Q6導(dǎo)通,,為Q5的柵極提供放電回路,從而使Q5很快關(guān)閉,。當(dāng)Q5關(guān)閉后,,由于下管的開通或負載的作用,使得Phase電壓下降接近0V,從而使C4經(jīng)過+15V→D2→C4→GND回路充電,,為下一次導(dǎo)通做好準(zhǔn)備,。

C. 當(dāng)LS為低電平時,Q8,、Q11導(dǎo)通,,Q10關(guān)閉,驅(qū)動電路通過R11為下管Q9的柵極充電,,使Q9導(dǎo)通,。

D. 當(dāng)LS為高電平時,Q8,、Q11關(guān)閉,,Q10導(dǎo)通,為Q9的柵極提供放電回路,使Q9關(guān)斷,。

E. 當(dāng)HS和LS同時為高電平時,,上管開通下管關(guān)閉。當(dāng)HS和LS同時為低電平時,,上管關(guān)閉下管開通,。在實際應(yīng)用中,為了避免上下管同時開通,,HS和LS的邏輯要靠MCU或邏輯電路來保證,。

2.2 半橋驅(qū)動芯片組成的驅(qū)動電路

半橋驅(qū)動芯片組成的驅(qū)動電路如圖4所示,工作原理如下:

A.當(dāng)HS和LS同時為高電平時,,HO有驅(qū)動電壓輸出,,使Q1開通。當(dāng)HS和LS同時為低電平時,,LO有驅(qū)動電壓輸出,,使Q2開通。

B.電容C2與分立器件驅(qū)動電路里的C4作用相同,,同樣為自舉電容,。

C.電容C1為去藕電容,為抑制功率MOSFET開關(guān)時對驅(qū)動電路浮動電源部分的干擾,,一般應(yīng)加上此電容,。

2.3 兩種驅(qū)動線路的區(qū)別

A.兩種驅(qū)動電路在開通時能提供基本相同的驅(qū)動電流驅(qū)動MOSFET開通,但在MOSFET關(guān)斷時,,分立器件驅(qū)動電路因為有三極管放電,,所以能提供更大的放電電流關(guān)閉MOSFET,而半橋驅(qū)動電路由于要經(jīng)過柵極電阻放電,,所以放電電流相對較小,,導(dǎo)致MOSFET關(guān)閉時間過長,開關(guān)損耗相應(yīng)增加。解決的辦法可以是在驅(qū)動電阻上反并聯(lián)一只二極管并增加一個放電的PNP三極管,。
B.分立器件驅(qū)動電路用的器件較多,,可靠性相對沒有半橋芯片的驅(qū)動電路高。但前提條件是半橋驅(qū)動芯片的驅(qū)動電路要設(shè)計合理,。

3 MOSFET驅(qū)動線路的要求及參數(shù)的調(diào)整

門極電壓不能超過Vgs的最大值,。在設(shè)計驅(qū)動線路時,應(yīng)考慮驅(qū)動電源電壓和線路的抗干擾性,,確保MOSFET在帶感性負載且工作在開關(guān)狀態(tài)時柵極電壓不超過Vgs的最大值,。

為了能夠減少MOSFET的開關(guān)損耗,驅(qū)動線路應(yīng)能提供足夠大的驅(qū)動電流,,使開通和關(guān)斷的時間盡可能短,,同時,盡量減少門極電壓的高頻震蕩,。如果要獲得同樣的RC時間常數(shù),,使用較小的驅(qū)動電阻和較大的電容可以獲得較好的驅(qū)動特性,但驅(qū)動線路的損耗同時也增加了,。

圖5和圖6是實際應(yīng)用中的測試波形,,從圖中我們可以看出:①電容的增加使得開啟的時間變長,增加了開通損耗,。②電容的增加,,使得門極電壓的高頻震蕩減少。同時,,由于米勒平臺的振蕩減小,,MOSFET在米勒平臺期間的損耗也會相應(yīng)減小。

延長MOSFET的開通時間可以減小開通時的涌入電流,。由于電機負載為感性負載,,所以在PWM關(guān)斷時存在續(xù)流現(xiàn)象(見圖7中的I2),為了減小續(xù)流側(cè)反向恢復(fù)電流(Irr)的大小,,PWM側(cè)開關(guān)管的開通速度不宜過快,。由于MOSFET處于飽和區(qū)時有公式:Id=K*(Vgs-Vth)2,(K為一常數(shù),由MOSFET的特性決定),。所以在一定的溫度和Vds條件下,,從MOSFET的門極驅(qū)動電壓Vgs可以判斷MOSFET中的電流大小。圖5中Vgs峰值為9.1V,,圖6中Vgs峰值為6.4V,,所以增加電容使得峰值電流減小。Id也可從MOSFET的轉(zhuǎn)移特性圖中獲得,。

由于MOSFET的封裝電感和線路的雜散電感的存在,,在MOSFET反向恢復(fù)電流Irr突然關(guān)斷時,,MOSFET(Q3)上的電壓Vds會出現(xiàn)振鈴(如圖8中CH2所示)。此振鈴的出現(xiàn)會導(dǎo)致Vds超過MOSFET的擊穿電壓從而發(fā)生雪崩現(xiàn)象,。如果線路中出現(xiàn)振鈴,我們可以通過以下方法來減小振鈴:

A.設(shè)計線路時應(yīng)考慮線路板布線:①盡量縮短驅(qū)動線路與MOSFET之間的線跡長度,;②使大電流回路的銅箔走線盡量短且寬,,必要時可以在銅箔表面加錫;③合理的走線,,使大電流環(huán)路的面積最小,。

B.如果線路雜散電感已經(jīng)確定,可以通過減小PWM側(cè)的MOSFET開通速度來減小在續(xù)流側(cè)的MOSFET上的Vds振鈴,,從而能夠使MOSFET上的Vds不超過最大耐壓值,。

C.如果以上兩種方法都不能很好地解決問題,我們可以通過在相線上加snubber的方法來抑制線路的振鈴,。

注意Cdv/dt產(chǎn)生的柵極感應(yīng)電壓,。如圖7所示:在控制MOSFET Q1的導(dǎo)通開關(guān)期間,因為Q1的米勒效應(yīng)和導(dǎo)通延遲的緣故,,滿輸入電壓并不會立刻出現(xiàn)在Q3的漏極上,。施加在Q3上的漏極電壓會感應(yīng)出一個通過其柵-漏極間米勒電容Cgd(見圖2)進行耦合的電流。該感應(yīng)電流在Q3的內(nèi)部柵極電阻Rg和外部柵極電阻的兩端產(chǎn)生一個壓降,。該電壓將對Q3柵極上的柵-源極間電容Cgs進行充電,。Q3上的感應(yīng)柵極電壓的幅度是dv/dt、Cgd,、Cgs和總柵極電阻的一個函數(shù),。

感應(yīng)柵極電壓如圖8中的CH1所示,其值已達到2.3V,。另外,,由于源極引線電感的存在,在Q3內(nèi)的電流迅速減小時,,會在Ls的兩端感應(yīng)出一個極性為上負下正的電壓,,如圖9所示,此時加在DIE上的電壓Vgs(die)要大于在外部引腳上測量的Vgs電壓,,所以由于Ls的影響,,使得MOSFET有提前導(dǎo)通的可能。如果下管由于感應(yīng)電壓而導(dǎo)通,,則會造成上下管穿通,,如果MOSFET不能承受此穿通電流,MOSFET就會損壞,。

 

防止產(chǎn)生Cdv/dt感應(yīng)導(dǎo)通的方法:

A.選擇具有較高門限電壓的MOSFET,。

B.選擇具有較小米勒電容Cgd和較小Cgd/Cgs的MOSFET,。

C.使上橋(Q1)的開啟速度變慢,從而減小關(guān)斷時的dv/dt和di/dt,,使感應(yīng)電壓Cdv/dt和Lsdi/dt減小,。

D.增加Q3的柵極電容Cgs,從而減小感應(yīng)電壓,。

保留Cdv/dt感應(yīng)導(dǎo)通的好處

Cdv/dt感應(yīng)導(dǎo)通有一個好處:它能夠減小續(xù)流側(cè)MOSFET上的電壓尖峰和Vds振鈴(V = L×dIrr/dt; L:環(huán)路寄生電感),, 同時也減小了系統(tǒng)的EMI干擾。因此,,在設(shè)計MOSFET驅(qū)動線路時,,我們應(yīng)根據(jù)實際情況來權(quán)衡驅(qū)動參數(shù)的調(diào)整,即究竟是阻止Cdv/dt感應(yīng)導(dǎo)通以求最大限度地提升電路效率和可靠性還是采用Cdv/dt感應(yīng)導(dǎo)通來抑制過多的寄生振鈴。

4 結(jié)論

4.1 在開始設(shè)計之前,,應(yīng)該全面了解所選MOSFET的參數(shù),,判斷MOSFET是否能滿足產(chǎn)品要求,包括MOSFET的耐壓(Vgs和Vds),、最大電流等參數(shù),,確保當(dāng)工作條件最惡劣時這些參數(shù)不要超過MOSFET的最大額定值。

4.2 在線路設(shè)計階段,,必須進行熱設(shè)計,,以確保MOSFET工作在安全工作區(qū)。應(yīng)特別注意線路板的布線,,盡量減小線路雜散電感,。

4.3 在不影響可靠性的情況下盡量縮短開關(guān)時間,將開關(guān)損耗降到最低,。有時為了進一步提高效率,,降低溫升,還可采用同步整流,。



 
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。