《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于CMOS工藝的鋰聚合物電池保護(hù)電路設(shè)計(jì)
基于CMOS工藝的鋰聚合物電池保護(hù)電路設(shè)計(jì)
摘要:  本論文基于標(biāo)準(zhǔn)CMOS工藝,設(shè)計(jì)了一種全功能電池保護(hù)電路。通過(guò)過(guò)放電檢測(cè)輸出端,、過(guò)充電檢測(cè)輸出端的CMOS輸出電平控制外接的兩個(gè)N溝道場(chǎng)效應(yīng)開(kāi)關(guān)晶體管的關(guān)斷,,從而達(dá)到對(duì)電池實(shí)施保護(hù)的目的?;谌δ茈姵乇Wo(hù)電路原理,,針對(duì)過(guò)放電、過(guò)充電,、放電過(guò)電流,、負(fù)載短路等異常狀態(tài)設(shè)置了相應(yīng)的保護(hù)機(jī)制。
Abstract:
Key words :

1 引言

  鋰電池產(chǎn)品以高能量密度,、長(zhǎng)循環(huán)壽命,、快速充放電、高電池電壓,、工作溫度范圍廣,、無(wú)記憶等優(yōu)異特性占據(jù)了市場(chǎng)很大份額。然而,,鋰電池產(chǎn)品在充放電過(guò)程中的過(guò)充電,、過(guò)放電" title="過(guò)放電">過(guò)放電,、放電過(guò)電流及其它異常狀態(tài)(例如負(fù)載短路),將會(huì)導(dǎo)致內(nèi)部發(fā)熱,,可能引起電池或其它器件的損害,,嚴(yán)重影響到電池使用的安全性。因此,,鋰電池產(chǎn)品保護(hù)電路" title="保護(hù)電路">保護(hù)電路的設(shè)計(jì)應(yīng)用必不可少,。

  本論文基于標(biāo)準(zhǔn)CMOS工藝,設(shè)計(jì)了一種全功能電池保護(hù)電路,。通過(guò)過(guò)放電檢測(cè)輸出端,、過(guò)充電檢測(cè)輸出端的CMOS輸出電平控制外接的兩個(gè)N溝道場(chǎng)效應(yīng)開(kāi)關(guān)晶體管的關(guān)斷,從而達(dá)到對(duì)電池實(shí)施保護(hù)的目的,?;谌δ茈姵乇Wo(hù)電路原理,針對(duì)過(guò)放電,、過(guò)充電,、放電過(guò)電流、負(fù)載短路等異常狀態(tài)設(shè)置了相應(yīng)的保護(hù)機(jī)制,。
 

  2 電池保護(hù)電路原理分析

  本論文所設(shè)計(jì)的電池保護(hù)電路應(yīng)用示意圖如圖1所示,。實(shí)線框內(nèi)為電池保護(hù)電路的系統(tǒng)結(jié)構(gòu)圖,框外為外圍器件連接示意圖,。

  圖1中,,DOUT為過(guò)放電檢測(cè)的CMOS輸出,COUT為過(guò)充電檢測(cè)的CMOS輸出,,VDD為電池電壓輸入,,VSS為芯片接地引腳,DS為響應(yīng)延遲時(shí)間縮短控制輸入端,,V-為放電過(guò)流檢測(cè)端,。

  在充電時(shí),若電池電壓高于過(guò)充電檢測(cè)電壓并保持相應(yīng)的延遲時(shí)間,,COUT端由高電位變?yōu)榈碗娢?,充電控制MOS管MC關(guān)斷,芯片進(jìn)入過(guò)充電保護(hù)狀態(tài),,停止充電,。

  在放電時(shí),若電池電壓低于過(guò)放電檢測(cè)電壓并保持相應(yīng)的延遲時(shí)間,,DOUT端由高電位變?yōu)榈碗娢?,放電控制MOS管MD關(guān)斷,芯片進(jìn)入過(guò)放電保護(hù)模式,,停止放電,。

  

鋰離子/鋰聚合物電池保護(hù)電路芯片應(yīng)用電路圖以及內(nèi)部系統(tǒng)結(jié)構(gòu)框圖

 

  圖1 鋰離子/鋰聚合物電池保護(hù)電路芯片應(yīng)用電路圖以及內(nèi)部系統(tǒng)結(jié)構(gòu)框圖

  在放電時(shí),,芯片同時(shí)監(jiān)控V-端電壓。當(dāng)因電流過(guò)大引起V-端電壓高于放電過(guò)電流檢測(cè)電壓,,而低于短路檢測(cè)電壓時(shí),,芯片進(jìn)入放電過(guò)電流保護(hù)狀態(tài);當(dāng)V-端電壓高于短路檢測(cè)電壓時(shí),芯片進(jìn)入短路保護(hù)狀態(tài),。此時(shí),,DOUT端輸出由高電位變?yōu)榈碗娢唬P(guān)斷MD防止電路中通過(guò)強(qiáng)電流,。

  圖1中,,R1和C1起到對(duì)外接充電器或與其并聯(lián)的二次電池的電壓波動(dòng)進(jìn)行平滑濾波抑制的作用,。而電阻R1,、R2為當(dāng)對(duì)電池反向充電或充電器充電電壓超過(guò)芯片絕對(duì)極限額定充電電壓值時(shí)的限流電阻。

  該系統(tǒng)中主要包括過(guò)充電檢測(cè)電路(VD1),、過(guò)放電檢測(cè)電路(VD2),、放電過(guò)電流檢測(cè)電路(VD3)和短路檢測(cè)電路、電平轉(zhuǎn)換電路,、基準(zhǔn)電路,、振蕩電路" title="振蕩電路">振蕩電路以及偏置電路等。

  3 電路設(shè)計(jì)

  由于保護(hù)電路依靠電池來(lái)供應(yīng)其電源電壓,,為了不影響電池的待機(jī)時(shí)間,,應(yīng)盡可能設(shè)計(jì)低電源電壓、低功耗的電池保護(hù)電路,。

  3.1 檢測(cè)電路設(shè)計(jì)

  由于檢測(cè)電路VD1,、VD2、VD3原理類似,,在此以過(guò)放電檢測(cè)電路(VD2)設(shè)計(jì)為例進(jìn)行分析,。為了滿足整個(gè)芯片功耗小的要求,可設(shè)計(jì)該電路處于亞閾值工作狀態(tài),,有效降低其工作電流及電壓,。

  

過(guò)放電檢測(cè)電路

 

  圖2 過(guò)放電檢測(cè)電路過(guò)放電檢測(cè)電路(VD2)可利用一個(gè)二級(jí)開(kāi)環(huán)比較器來(lái)實(shí)現(xiàn),如圖2所示,。在設(shè)計(jì)中應(yīng)采用差分輸入并盡可能地提高增益,,以滿足精度要求。該電路中,,第一級(jí)是由MN1,MN2,MP1,MP2,MN3,MN4組成的差分放大器,。第二級(jí)是由MP5,MN5組成的單級(jí)放大器。前級(jí)放大器放大輸入的差模信號(hào),,后一級(jí)將前級(jí)的輸出進(jìn)一步放大,,以達(dá)到數(shù)字信號(hào)的輸出電平,。該比較器電路的直流增益為:

 

  

 

  同時(shí),還必須考慮諸如傳輸時(shí)延,、輸出電壓擺率,、輸入共模范圍等性能。鑒于大的偏置電流和小的電容可使擺率得到改善,,縮短延遲時(shí)間,,因此可通過(guò)加大偏置電流而達(dá)到高速。但是,,一般而言,,高速比較器也會(huì)有較高的功耗。因此在設(shè)計(jì)時(shí)必須在功耗與速度之間進(jìn)行折衷,。相對(duì)于處于飽和區(qū)的比較器而言,,工作在亞閾值區(qū)的比較器的延遲時(shí)間顯著增長(zhǎng),這主要是由于工作在亞閾值區(qū)的偏置電流較小,,電容充放電需要更長(zhǎng)的時(shí)間,,從而使得延遲時(shí)間變長(zhǎng)。該比較器具有與差動(dòng)放大器類似的ICMR(輸入共模范圍),,其最低輸入電壓應(yīng)小于過(guò)放電檢測(cè)基準(zhǔn)電壓,。

  

 

  3.2 偏置電路設(shè)計(jì)

  偏置電路用于為檢測(cè)電路提供穩(wěn)定、高精度的基準(zhǔn)電壓,,從而檢測(cè)過(guò)充電,、過(guò)放電、放電過(guò)電流等狀態(tài),。本論文中設(shè)計(jì)了一種低功耗基準(zhǔn)電路,,示于圖3。

  

低功耗基準(zhǔn)電路

 

  圖3 低功耗基準(zhǔn)電路基于耗盡型NMOS管閾值電壓為負(fù)值,,在VGS=0時(shí)也處于工作狀態(tài),,該特性可有效降低其工作電壓及功耗。因而,,該基準(zhǔn)電路中利用串聯(lián)的耗盡型NMOS管MN1-MN4,、串聯(lián)的增強(qiáng)型NMOS管MN5-MN9、MN11-MN12和電阻R1,、R2構(gòu)成基于VGS的基準(zhǔn)電壓電路,,該基準(zhǔn)電路的輸出為檢測(cè)比較器反相端的基準(zhǔn)電壓信號(hào)VREF。

 

  由于本電路中耗盡管閾值電壓為負(fù)值,,且柵源電壓恒為0,故耗盡型管始終工作在飽和區(qū),。且其電流值恒定為:

  

 

  同時(shí)為滿足該電路低功耗的要求,應(yīng)盡可能使電路中增強(qiáng)性管工作在亞閾值區(qū)。如圖3所示,,基于襯偏效應(yīng)和源極電位的升高,,MN5管工作于亞閾值區(qū)。

  

 

  

 

  即對(duì)于增強(qiáng)型NMOS管,,VTH隨溫度升高而下降,,而對(duì)于耗盡型NMOS管,VTH為負(fù)值,,其絕對(duì)值隨溫度升高而上升,。由此推得,當(dāng)選取合適的參數(shù)時(shí),,本電路的溫度漂移可以控制在較小范圍內(nèi),。

  3.3 其余部分設(shè)計(jì)

  3.3.1 延時(shí)電路

  為了防止干擾信號(hào)使保護(hù)電路產(chǎn)生誤操作,系統(tǒng)針對(duì)不同的異常狀態(tài),,設(shè)置了相應(yīng)的延遲時(shí)間,。

  該延遲時(shí)間是由振蕩電路以及計(jì)數(shù)器共同實(shí)現(xiàn)。

  振蕩電路采用三級(jí)環(huán)形振蕩器結(jié)構(gòu),,其每一級(jí)由一個(gè)反相器和一個(gè)電容構(gòu)成,,該振蕩電路正常工作時(shí),,向計(jì)數(shù)器輸出振蕩方波,,不工作時(shí)輸出高電平。

  計(jì)數(shù)器由D觸發(fā)器級(jí)聯(lián)而成,。

  3.3.2 電平轉(zhuǎn)換電路

  同時(shí),,為了保證充電控制管MC在過(guò)充電狀態(tài)下有效關(guān)斷,利用電平轉(zhuǎn)換電路使輸出COUT端為邏輯電路輸出信號(hào)的四級(jí)反相,,從而使COUT端低電平由VSS降至V-,。

  3.3.3 待機(jī)狀態(tài)

  芯片中的部分電路設(shè)有使能端,為邏輯電路輸出,。當(dāng)保護(hù)電路進(jìn)入過(guò)放電保護(hù)狀態(tài)后,,該使能端由高電位變?yōu)榈碗娢唬P(guān)閉相應(yīng)電路,,芯片進(jìn)入待機(jī)狀態(tài),,從而大大降低消耗電流,減小功耗,。

  

過(guò)充電保護(hù)及復(fù)原波形圖

 

  圖4 過(guò)充電保護(hù)及復(fù)原波形圖基于耗盡型NMOS管閾值電壓為負(fù)值,,在VGS=0時(shí)也處于工作狀態(tài),該特性可有效降低其工作電壓及功耗,。因而,,該基準(zhǔn)電路中利用串聯(lián)的耗盡型NMOS管MN1-MN4、串聯(lián)的增強(qiáng)型NMOS管MN5-MN9,、MN11-MN12和電阻R1,、R2構(gòu)成基于VGS的基準(zhǔn)電壓電路,,該基準(zhǔn)電路的輸出為檢測(cè)比較器反相端的基準(zhǔn)電壓信號(hào)VREF。

 

  由于本電路中耗盡管閾值電壓為負(fù)值,,且柵源電壓恒為0,故耗盡型管始終工作在飽和區(qū),。且其電流值恒定為:

  

 

  同時(shí)為滿足該電路低功耗的要求,應(yīng)盡可能使電路中增強(qiáng)性管工作在亞閾值區(qū),。如圖3所示,,基于襯偏效應(yīng)和源極電位的升高,MN5管工作于亞閾值區(qū),。

  

 

  

 

  即對(duì)于增強(qiáng)型NMOS管,,VTH隨溫度升高而下降,而對(duì)于耗盡型NMOS管,,VTH為負(fù)值,,其絕對(duì)值隨溫度升高而上升。由此推得,,當(dāng)選取合適的參數(shù)時(shí),,本電路的溫度漂移可以控制在較小范圍內(nèi)。

  3.3 其余部分設(shè)計(jì)

  3.3.1 延時(shí)電路

  為了防止干擾信號(hào)使保護(hù)電路產(chǎn)生誤操作,,系統(tǒng)針對(duì)不同的異常狀態(tài),,設(shè)置了相應(yīng)的延遲時(shí)間。

  該延遲時(shí)間是由振蕩電路以及計(jì)數(shù)器共同實(shí)現(xiàn),。

  振蕩電路采用三級(jí)環(huán)形振蕩器結(jié)構(gòu),,其每一級(jí)由一個(gè)反相器和一個(gè)電容構(gòu)成,該振蕩電路正常工作時(shí),,向計(jì)數(shù)器輸出振蕩方波,,不工作時(shí)輸出高電平。

  計(jì)數(shù)器由D觸發(fā)器級(jí)聯(lián)而成,。

  3.3.2 電平轉(zhuǎn)換電路

  同時(shí),,為了保證充電控制管MC在過(guò)充電狀態(tài)下有效關(guān)斷,利用電平轉(zhuǎn)換電路使輸出COUT端為邏輯電路輸出信號(hào)的四級(jí)反相,,從而使COUT端低電平由VSS降至V-,。

  3.3.3 待機(jī)狀態(tài)

  芯片中的部分電路設(shè)有使能端,為邏輯電路輸出,。當(dāng)保護(hù)電路進(jìn)入過(guò)放電保護(hù)狀態(tài)后,,該使能端由高電位變?yōu)榈碗娢唬P(guān)閉相應(yīng)電路,,芯片進(jìn)入待機(jī)狀態(tài),,從而大大降低消耗電流,減小功耗。

  

過(guò)充電保護(hù)及復(fù)原波形圖

 

  圖4 過(guò)充電保護(hù)及復(fù)原波形圖4 仿真結(jié)果及分析

 

  本芯片采用0.6μm的標(biāo)準(zhǔn)CMOS工藝,。使用49級(jí)HSPICE模型進(jìn)行仿真,。圖4為過(guò)充電保護(hù)及復(fù)原波形圖,圖5為過(guò)放電保護(hù)及復(fù)原波形圖,。

  正常工作時(shí),,該芯片的消耗電流為2.11μA,而處于待機(jī)狀態(tài)時(shí)的消耗電流僅為0.03μA。過(guò)充電過(guò)放電的電壓檢測(cè)精度約為25mV,。

  

過(guò)放電保護(hù)及復(fù)原波形圖

 

  圖5 過(guò)放電保護(hù)及復(fù)原波形圖

  5 結(jié)論

  為滿足低功耗要求,,設(shè)計(jì)了基于亞閾值區(qū)的基準(zhǔn)電路及比較器,并設(shè)置了待機(jī)狀態(tài),。經(jīng)仿真驗(yàn)證,,本芯片滿足功能、性能設(shè)計(jì)要求,,已經(jīng)流片成功,。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。