《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技術(shù) > 業(yè)界動(dòng)態(tài) > 幀間差分與邊緣紋理相融合的運(yùn)動(dòng)目標(biāo)檢測(cè)

幀間差分與邊緣紋理相融合的運(yùn)動(dòng)目標(biāo)檢測(cè)

2009-06-22
作者:王 浩,劉 輝,姚 瑤,,尚振宏

  摘 要:提出了一種利用邊緣紋理進(jìn)行背景建模,,結(jié)合三幀差分算法,獲取目標(biāo)輪廓的運(yùn)動(dòng)目標(biāo)檢測(cè)方法,進(jìn)一步通過(guò)區(qū)域填充得到目標(biāo)前景,。該方法對(duì)光線變化不敏感,對(duì)陰影去除有比較好的效果,,改進(jìn)了邊緣紋理差分和幀間差分的缺陷,,取得了比較完整準(zhǔn)確的運(yùn)動(dòng)目標(biāo)前景。
  關(guān)鍵詞:三幀差分,;邊緣檢測(cè),;背景差分;運(yùn)動(dòng)目標(biāo)檢測(cè)

?

  近些年來(lái),,隨著智能監(jiān)控系統(tǒng)在安防,、交通等領(lǐng)域的逐步推廣和應(yīng)用,基于計(jì)算機(jī)視覺(jué)的智能監(jiān)控系統(tǒng)技術(shù)也得到了不斷的發(fā)展,。運(yùn)動(dòng)目標(biāo)檢測(cè)是智能監(jiān)控的首要步驟,,對(duì)運(yùn)動(dòng)目標(biāo)的正確檢測(cè),是對(duì)視頻序列進(jìn)一步分析識(shí)別,,對(duì)運(yùn)動(dòng)目標(biāo)活動(dòng)判斷理解的基礎(chǔ),。獲得比較真實(shí)、完整的前景,,才能做到準(zhǔn)確,、可靠、有效地跟蹤,。
  運(yùn)動(dòng)目標(biāo)檢測(cè)方法主要有幀間差分法,、背景差分法、光流法等,。目前最為常用的方法是背景差分法,,它通常利用數(shù)學(xué)方法對(duì)監(jiān)控場(chǎng)景進(jìn)行背景圖像建模,,通過(guò)將背景圖像與當(dāng)前幀圖像做差分得到前景,。在這種思想基礎(chǔ)上提出了很多算法,如混合高斯模型GMM(Gauss Mixed Model)[1],,LBP(Local Binary Pattern)[2],,貝葉斯模型等。這些方法具有獲取目標(biāo)前景比較完整,、濾除樹枝晃動(dòng),、水面波動(dòng)等干擾的能力強(qiáng)的特點(diǎn),但是通常運(yùn)算速度很慢,,對(duì)于光線變化比較敏感,,對(duì)目標(biāo)陰影的去除效果也較差。
  本文在對(duì)現(xiàn)有運(yùn)動(dòng)檢測(cè)算法以及圖像處理技術(shù)研究的基礎(chǔ)上提出了一種利用邊緣紋理進(jìn)行背景建模,、結(jié)合幀間差分獲取運(yùn)動(dòng)目標(biāo)完整輪廓的方法,,并通過(guò)進(jìn)一步處理得到了比較完整準(zhǔn)確的運(yùn)動(dòng)目標(biāo)前景圖像,。該運(yùn)動(dòng)目標(biāo)檢測(cè)方法受光線變化影響小,運(yùn)動(dòng)速度快,,對(duì)前景目標(biāo)陰影的去除也獲得了比較好的效果,。
1 相鄰幀間差分和三幀差分
  相鄰幀間差分法是一種常用的運(yùn)動(dòng)目標(biāo)檢測(cè)方法[3],利用相鄰兩幀的差值,,得到運(yùn)動(dòng)區(qū)域輪廓,。設(shè)在時(shí)刻t和t+1采集到的兩幅圖像分別為fk(x,y)和fk-1(x,y),兩幀之間的差分為:
  
  利用公式(1)得到差分圖像Dk,,然后選擇閾值T對(duì)差分圖像二值化,,以差值大于T為前景,得到運(yùn)動(dòng)目標(biāo)輪廓,。該方法對(duì)運(yùn)動(dòng)檢測(cè)比較靈敏,,不受噪聲干擾影響,但也存在一定的缺陷,,獲得的目標(biāo)輪廓在目標(biāo)運(yùn)動(dòng)方向進(jìn)行了拉伸,,運(yùn)動(dòng)速度不同,造成的拉伸程度也不同,。對(duì)此一些學(xué)者提出了采用三幀差分的方法[4-5],,利用2次幀間差分結(jié)果,進(jìn)行“與”操作,,從而得到比較精確的目標(biāo)輪廓位置,。其方法為:

  
  采用這種方法得到的目標(biāo)邊緣比較真實(shí),定位準(zhǔn)確,,對(duì)剛體目標(biāo)的跟蹤有比較好的效果,,但對(duì)于人體運(yùn)動(dòng),由于各部分運(yùn)動(dòng)不同,、姿態(tài)不一致,,造成獲取的輪廓一般不連續(xù),難以進(jìn)一步閉合填充,。
2 基于邊緣紋理的背景差分
  常用的邊緣檢測(cè)算法有很多種,,比如Roberts算法、Canny算法,、Sobel算法,、高斯拉普拉斯(LOG)算法等[6][7]。其中利用Sobel算子進(jìn)行邊緣檢測(cè),,獲取圖像邊緣紋理信息的方法,,由于復(fù)雜度低、實(shí)時(shí)性以及檢測(cè)效果較好,所以被本文采用,。Sobel檢測(cè)算子為:?
??? ??
??? 分別求取當(dāng)前幀的橫向梯度Gradx和Grady縱向梯度,,兩者相加得到整幅紋理的圖像Grad。得到邊緣紋理圖像后,,利用該圖像作為當(dāng)前圖像進(jìn)行背景建模,。本文采用平均背景法生成背景。平均背景法是一種運(yùn)算量小,、復(fù)雜度低的背景方法,,它將當(dāng)前幀像素點(diǎn)的值按一定權(quán)重累加入背景,獲取背景,。設(shè)某一像素點(diǎn)在t-1時(shí)刻的背景像素值為Pt,,當(dāng)前幀的像素值為BKt-1,背景更新權(quán)重為α,,則更新方法為:
  ??
  經(jīng)過(guò)一段時(shí)間的學(xué)習(xí)得到邊緣背景后(圖1b,,圖為反色顯示),利用當(dāng)前邊緣圖像(圖1a)與背景邊緣圖像差分,,對(duì)差分結(jié)果取閾值做二值化,,得到運(yùn)動(dòng)目標(biāo)前景(圖1c)。由于Sobel算子紋理檢測(cè)的良好特性,,可以得到比較完整的目標(biāo)輪廓,,但在前景與背景的邊緣交叉處,輪廓容易發(fā)生斷裂與缺失,,這在視頻場(chǎng)景復(fù)雜的情況下尤為突出,。另外,由于Sobel邊緣檢測(cè)對(duì)噪聲比較敏感,,檢測(cè)的輪廓邊緣也會(huì)有一些細(xì)小波動(dòng),,背景差分結(jié)果存在一些噪聲。

?

3 兩種方法的融合
  如前所述,,以上兩種方法能夠準(zhǔn)確定位運(yùn)動(dòng)目標(biāo)的邊緣,,但是都不能保證其連續(xù)完整,存在一定的問(wèn)題,。根據(jù)現(xiàn)有的研究經(jīng)驗(yàn)[8],,考慮到兩種方法缺陷的互補(bǔ)性,將兩者檢測(cè)的結(jié)果累加,,從而得出完整輪廓。設(shè)幀間差分檢測(cè)結(jié)果為Ddiff,,邊緣背景差分結(jié)果為Dedge,,則最終運(yùn)動(dòng)目標(biāo)檢測(cè)結(jié)果為:
  ??
  整個(gè)運(yùn)動(dòng)目標(biāo)檢測(cè)算法的流程如圖2所示。

 

  本文對(duì)此方法進(jìn)行了實(shí)現(xiàn)驗(yàn)證,實(shí)驗(yàn)結(jié)果表明,,兩種方法相結(jié)合,,使邊緣背景差分和幀間差分在如下幾個(gè)方面得到了改進(jìn):
  (1)人在行走過(guò)程中,,由于著地腳和支撐腿運(yùn)動(dòng)相對(duì)靜止,,導(dǎo)致在三幀差分圖中消失,輪廓不能閉合(如圖3a,,反色顯示),,但是背景差分可以很好地得到腿部輪廓(圖3b),兩者結(jié)合可以得到圖3c的完整輪廓,。

 


 ?。?)當(dāng)目標(biāo)的紋理和背景紋理相近,或者檢測(cè)邊緣得到邊緣不連續(xù)時(shí),,邊緣背景建模無(wú)法很好地形成閉合,,如圖4所示,a,d為前景,,b,,e為當(dāng)前幀,分別會(huì)造成目標(biāo)邊緣的斷裂(c)和消失(f),。在視頻序列的復(fù)雜場(chǎng)景中,,會(huì)造成人體輪廓的部分缺失(如圖5a反色顯示,在運(yùn)動(dòng)人體腰部位置,,由于受到背景邊緣影響,,造成上身與下身的割裂),小段的邊緣缺失可以通過(guò)形態(tài)學(xué)處理或者邊緣連接得到閉合,,大的斷裂則難以補(bǔ)充完整,,另外如果多次采用形態(tài)學(xué)膨脹腐蝕,也會(huì)放大噪聲點(diǎn)干擾,,造成對(duì)目標(biāo)形狀的破壞,。幀間差分的結(jié)果對(duì)于這類邊緣的缺失進(jìn)行了有效補(bǔ)充(圖5c)。(3)背景學(xué)習(xí)的過(guò)程需要指定更新權(quán)重值α,,權(quán)重值大,,背景的學(xué)習(xí)速度過(guò)快,導(dǎo)致慢速運(yùn)動(dòng)目標(biāo)融入背景,,出現(xiàn)運(yùn)動(dòng)目標(biāo)殘余,、拖影等。學(xué)習(xí)速度太慢,,會(huì)使背景初始生成時(shí)間過(guò)長(zhǎng),。在這里,,本文設(shè)定兩個(gè)更新參數(shù),利用幀間差分結(jié)果,,幀間差分區(qū)域內(nèi)的值采用權(quán)重值小的α=0.01更新,,減緩目標(biāo)融入背景速度。幀間差分區(qū)域以外的像素采用大權(quán)重值更新,,使目標(biāo)離開當(dāng)前位置后,,在原位置區(qū)域迅速更新背景,本文設(shè)定α=0.1,,加快了初始背景學(xué)習(xí),,實(shí)驗(yàn)中采用35幀左右可以學(xué)到比較干凈的邊緣紋理背景。

4 輪廓填充與前景檢測(cè)結(jié)果
  獲得運(yùn)動(dòng)目標(biāo)輪廓圖像之后,,需要對(duì)輪廓進(jìn)行形態(tài)學(xué)閉合處理,,完善輪廓,然后進(jìn)行填充,,最后通過(guò)腐蝕或平滑處理,,濾除噪聲,獲得前景目標(biāo),。需要注意的是,,當(dāng)運(yùn)動(dòng)目標(biāo)出現(xiàn)在圖像邊緣時(shí),檢測(cè)到輪廓并不是一個(gè)閉合的曲線,,在圖像邊緣處不存在前景邊緣,,無(wú)法進(jìn)一步填充,可以在圖像邊緣的x或y方向添加一條與輪廓區(qū)域長(zhǎng)度相同的輔助線,,幫助閉合輪廓,。最后經(jīng)過(guò)標(biāo)識(shí)后的前景檢測(cè)結(jié)果如圖6所示,a為經(jīng)過(guò)標(biāo)注的視頻幀,,b為幀間差分結(jié)果,,c為背景差分結(jié)果,d為結(jié)果后的結(jié)果,,e為最終填充結(jié)果(二值圖均為反色顯示),。

?


??? 本文提出了一種新的背景差分方法,利用圖像的Sobel邊緣紋理學(xué)習(xí)背景,,差分得到目標(biāo)輪廓,,針對(duì)邊緣差分結(jié)果造成的輪廓線不連續(xù)以及背景學(xué)習(xí)率的問(wèn)題,又結(jié)合幀間差分方法,,進(jìn)行了改進(jìn)與完善,。本方法檢測(cè)得到的目標(biāo)前景比較完整準(zhǔn)確,可在此基礎(chǔ)上進(jìn)一步進(jìn)行目標(biāo)的跟蹤識(shí)別,。在算法實(shí)現(xiàn)過(guò)程中,,只利用灰度圖像進(jìn)行處理,,運(yùn)算復(fù)雜度低,,對(duì)陰影以及光照變化不敏感,,運(yùn)算速度比較理想,對(duì)于320×240分辨率的視頻圖像,,在配置CPU1.7 GB,,內(nèi)存1 GB的試驗(yàn)機(jī)上,能夠達(dá)到20 f/s以上,。
  本文檢測(cè)方法還不夠完善,,目前存在的問(wèn)題有:在強(qiáng)光下的陰影去除不是很理想;幀間差分以及背景差分的閾值需手動(dòng)指定,,如果進(jìn)一步結(jié)合分塊等自動(dòng)閾值確定的算法,,則能夠更好地適應(yīng)各種環(huán)境及光線變化;另外,,邊緣和紋理信息的檢測(cè)算法還需進(jìn)一步改進(jìn)和完善,。


參考文獻(xiàn)
[1]? OLIVER N, ROSARIO B,, PENTLAND A. A bayesian computer vision system for modeling human interactions, IEEE Trans.Pattern Analysis and Machine Intelligence, 2000.
[2] STARFFER C,, GRIMSON W E L.Adaptive background mixture models for real-time tracking, InProc.IEEE Conference on Computer Vision and Pattern Recognition,1999.
[3] 王栓,艾海舟,,何克忠.基于差分圖象的多運(yùn)動(dòng)目標(biāo)的檢測(cè)與跟蹤[J].中國(guó)圖象圖形學(xué)報(bào), 1999,,4(6):470-475.
[4] DAI GuoJun, ZHANG Yun. A novel auto-camshift algorithm used in object tracking. Proceedings of the 27th Chinese Control Conference .? 2008,7:16-18.
[5] 呂國(guó)亮,趙曙光,,趙俊.基于三幀差分和連通區(qū)域檢驗(yàn)的圖像運(yùn)動(dòng)目標(biāo)檢測(cè)新方法[J]. 液晶與顯示,,2007,2(22):87-92.
[6] 張冬芳,王向周.一種基于邊緣信息的改進(jìn)車輛檢測(cè)方法.2006,,8(1): 186-187.
[7] SONKA M, HLAVAC V, BOYLE R.圖象處理分析與機(jī)器視覺(jué)[M].第二版.? 艾海舟, 譯. 北京:人民郵電出版社, 2003.
[8] 朱明旱,,羅大庸,曹倩霞. 幀間差分與背景差分相融合的運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J].計(jì)算機(jī)測(cè)量與控制,,2005,,13(3) :215-217.

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,,并不代表本網(wǎng)站贊同其觀點(diǎn),。轉(zhuǎn)載的所有的文章、圖片,、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有,。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容,、版權(quán)和其它問(wèn)題,,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失,。聯(lián)系電話:010-82306118,;郵箱:[email protected]