《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 毅天國產(chǎn)PLC智能交通控制應(yīng)用
毅天國產(chǎn)PLC智能交通控制應(yīng)用
摘要: 據(jù)不完全統(tǒng)計,,目前我國城市里的十字路口交通系統(tǒng)大都采用定時來控制(不排除繁忙路段或高峰時段用交警來取代交通燈的情況),,這樣必然產(chǎn)生如下弊端:當(dāng)某條路段的車流量很大時卻要等待紅燈,而此時另一條是空道或車流量相對少得多的道卻長時間亮的是綠燈,這種多等少的尷尬現(xiàn)象是未對實際情況進行實時監(jiān)控所造成的,,不僅讓司機乘客怨聲載道,而且對人力和物力資源也是一種浪費,。
Abstract:
Key words :

  1引言

  據(jù)不完全統(tǒng)計,,目前我國城市里的十字路口交通系統(tǒng)大都采用定時來控制(不排除繁忙路段或高峰時段用交警來取代交通燈的情況),這樣必然產(chǎn)生如下弊端:當(dāng)某條路段的車流量很大時卻要等待紅燈,,而此時另一條是空道或車流量相對少得多的道卻長時間亮的是綠燈,,這種多等少的尷尬現(xiàn)象是未對實際情況進行實時監(jiān)控所造成的,不僅讓司機乘客怨聲載道,,而且對人力和物力資源也是一種浪費,。

  智能控制交通系統(tǒng)是目前研究的方向,也已經(jīng)取得不少成果,,在少數(shù)幾個先進國家已采用智能方式來控制交通信號,,其中主要運用GPS全球定位系統(tǒng)等。出于便捷和效果的綜合考慮,,我們可用如下方案來控制交通路況:制作傳感器探測車輛數(shù)量來控制交通燈的時長,。具體如下:在入路口的各個方向附近的地下按要求埋設(shè)感應(yīng)線圈,當(dāng)汽車經(jīng)過時就會產(chǎn)生渦流損耗,,環(huán)狀絕緣電線的電感開始減少,,即可檢測出汽車的通過,并將這一信號轉(zhuǎn)換為標準脈沖信號作為可編程控制器的控制輸入,,并用PLC計數(shù),,按一定控制規(guī)律自動調(diào)節(jié)紅綠燈的時長,。

  比較傳統(tǒng)的定時交通燈控制與智能交通燈控制,可知后者的最大優(yōu)點在于減緩滯流現(xiàn)象,,也不會出現(xiàn)空道占時的情形,,提高了公路交通通行率,較全球定位系統(tǒng)而言成本更低,。

  2車輛的存在與通過的檢測

  (1)感應(yīng)線圈(電感式傳感器)

  電感式傳感器其主要部件是埋設(shè)在公路下十幾厘米深處的環(huán)狀絕緣電線(特別適合新鋪道路,,可用混凝土直接預(yù)埋,老路則需開挖再埋),。當(dāng)有高頻電流通過電感時,,公路面上就會形成如圖1(a)中虛線所形成的高頻磁場。當(dāng)汽車進入這一高頻磁場區(qū)時,,汽車就會產(chǎn)生渦流損耗,,環(huán)狀絕緣電線的電感開始減少。當(dāng)汽車正好在該感應(yīng)線圈的正上方時,,該感應(yīng)線圈的電感減到最小值,。當(dāng)汽車離開這高頻磁場區(qū)時,該感應(yīng)線圈電感逐漸復(fù)原到初始狀態(tài),。由于電感變化該感應(yīng)線圈中流動的高頻電流的振幅(本論文所涉及的檢測工作方式)和相位發(fā)生變化,,因此,在環(huán)的始端連接上檢測相位或振幅變化的檢測器,,就可得到汽車通過的電信號,。若將環(huán)狀絕緣電線作為振蕩電路的一部分,則只要檢測振蕩頻率的變化即可知道汽車的存在和通過,。

  電感式傳感器的高頻電流頻率為60kHz,,尺寸為2×3m,電感約為100μH.這種傳感器可檢測的電感變化率在0.3%以上[1,,2],。

  電感式傳感器安裝在公路下面,從交通安全和美觀考慮,它是理想的傳感器,。傳感器最好選用防潮性能好的原材料,。

  (2)電路

  檢測汽車存在的具體實現(xiàn)是在感應(yīng)線圈的始端連接上檢測電感電流變化的檢測器,并將之轉(zhuǎn)化為標準脈沖電壓輸出。其具體電路圖由三部分組成:信號源部分,、檢測部分,、比較鑒別部分。原理框圖如圖2所示,輸出脈沖波形見圖1(b),。

  (3)傳感器的鋪設(shè)

  車輛計數(shù)是智能控制的關(guān)鍵,,為防止車輛出現(xiàn)漏檢的現(xiàn)象,環(huán)狀絕緣電線在地下的鋪設(shè)我們設(shè)采取在每個車行道上中的出口地(停車線處)以及在離出口地一定遠的進口的地方各鋪設(shè)一個相同的傳感器,方案如圖3(以典型的十子路口為例),,同一股道上的兩傳感器相距的距離為該股道正常運行時所允許的最長停車車龍為好,。

  3用PLC實現(xiàn)智能交通燈控制

  3.1控制系統(tǒng)的組成

  車輛的流量記數(shù)、交通燈的時長控制可由可編程控制器(PLC)來實現(xiàn),。當(dāng)然,,也可選用其他種類的計算機作為控制器。本例選用PLC作為控制器件是因為可編程控制器核心是一臺計算機,,它是專為工業(yè)環(huán)境應(yīng)用而設(shè)計制造的計算機,。它具有高可靠性豐富的輸入/輸出接口,并且具有較強的驅(qū)動能力;它采用一類可編程的存儲器,,用于其內(nèi)部存儲程序,,執(zhí)行邏輯運算,順序控制,定時,,計數(shù)與算術(shù)操作等面向用戶的指令,,并通過數(shù)字或模擬式輸入/輸出控制各種類型的機械或生產(chǎn)過程;它采用模塊化結(jié)構(gòu),編程簡單,,安裝簡單,,維修方便,。

  利用PLC,,可使上述描敘的各傳感器以及各道口的信號燈與之直接相連,非常方便可靠.

  本設(shè)計例中,其輸入端接收來自各個路口的車輛探測器測得的輸出標準電脈沖,,輸出接十字路口的紅綠信號交通燈,。信號燈的選擇:在本例中選用紅、黃,、綠發(fā)光二極管作為信號燈(箭頭方向型),。

  3.2車流量的計量

  車流量的計量有多種方式:

  (1)每股行車道的車流量通過PLC分別統(tǒng)計。當(dāng)車輛進入路口經(jīng)過第一個傳感器1時,,使統(tǒng)計數(shù)加1,,經(jīng)過第二個傳感器2出路口時,使統(tǒng)計數(shù)減1,,其差值為該股車道上車輛的滯留量(動態(tài)值),,可以與其他道的值進行比較,據(jù)此作為調(diào)整紅綠燈時長的依據(jù),。

  (2)先統(tǒng)計每股車道上車輛的滯留量,,然后按大方向原則累加統(tǒng)計。如,,將東西向的左行,、直行、右行道上的車輛的滯留量相加,,再與其它的3個方向的車流量進行比較,,據(jù)此作為調(diào)整紅綠燈時長的依據(jù),。

  (3)統(tǒng)計每股車道上車輛的滯留量后按通行最大化原則(不影響行車安全的多道相向行駛)累加統(tǒng)計。如,,東,、西相向的2個左行、直行,、右行道上的車輛的滯留量全部相加,,再與南北向的總車流量進行比較,據(jù)此作為調(diào)整紅綠燈時長的依據(jù)(下面的例子就是按此種方式),。

  以上計算判別全部由PLC完成,。可以把以上不同計量判別方式編成不同的子程序,,方便調(diào)用,。

  3.3程序流程

  本例就上述所描述的車流量統(tǒng)計方式,就十字路口給出一例PLC自動調(diào)整紅綠燈時長的程序流程,其行車順序與現(xiàn)實生活中執(zhí)行的一樣,,只是時間長短不一樣,。

  (1)當(dāng)各路口的車輛滯留量達一定值溢滿時(相當(dāng)于比較嚴重的堵車),紅綠燈切換采用現(xiàn)有的常規(guī)定時控制方式;

  (2)當(dāng)東,、西向路口的車輛滯留量比南,、北向路口的大時(反之亦然),該方向的通行時間=最小通行定時時間+自適應(yīng)滯環(huán)比較增加的延時時間(是變化的),,但不大于允許的最大通行時間,。其中最小定時時間是為了避免紅綠燈切換過快之弊;最大通行時間是為了保障公平性,不能讓其它的車或行人過分久等,。進一步的說明在后面的注釋中,。

  (3)自適應(yīng)滯環(huán)比較(本例的核心控制規(guī)律)增加的時間的確定若東、西向車輛滯留量≥南,、北向一個偏差量σ(如30輛車或其它值)時,,先讓東、西向的左轉(zhuǎn)彎車左行15s(定時控制,,值可改),,再讓直行車直行30s(直行時間的最小值,值可改)后再加一段延時保持,,直至東,、西向的車輛滯留量比南、北向的車輛滯留量還要少一個偏差量σ,,才結(jié)束該方向的通行,,切換到其它路上,否則一直延時繼續(xù)通行下去,直至到達最大通行時間而強制切換,。滯環(huán)特性如圖6 所示,。實際應(yīng)用時σ的值需整定,過小則導(dǎo)致紅綠燈切換過頻,,過大又不能實現(xiàn)適時控制,。

  4結(jié)束語

  比較傳統(tǒng)的定時交通燈控制與智能交通燈控制,可知后者的最大優(yōu)點在于減緩滯流現(xiàn)象,,也不會出現(xiàn)空道占時的情形,,提高了公路交通通行率,較全球定位系統(tǒng)而言成本更低,,特別適合繁忙的,、未立交的交通路口,更適合于四個以上的路口,,也可方便連網(wǎng),。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。