具有較高時(shí)鐘率和速度的高速DSP系統(tǒng)設(shè)計(jì)正在變得日益復(fù)雜,。結(jié)果,,增加了噪聲源數(shù)。現(xiàn)在,,高端DSP的時(shí)鐘率(1GHz)和速度(500MHZ)產(chǎn)生可觀的諧波,,這些是由于PCB線跡的作用如同天線所致。由此引起的噪聲使音頻,、視頻,、圖像和通信功能降低并對達(dá)到FCC/CE商標(biāo)認(rèn)證造成問題。為了降低電源噪聲,,對于高速DSP系統(tǒng)設(shè)計(jì)人員來講,,識(shí)別和找出可能的噪聲原因以及采用良好的高速設(shè)計(jì)實(shí)踐是關(guān)鍵。本文說明交擾,、鎖相環(huán)(PLL),、去耦/體電容器在降低噪聲中的重要性。
降低交擾
交擾是一個(gè)重要的噪聲源,。在高速系統(tǒng)中,,信號(hào)地通路依賴于工作頻率。對于低速信號(hào)(<10MHZ),電流經(jīng)過最小電阻地通路(最短通路)返回到源,。
在10MHZ以上,,情況就不同。經(jīng)電流最小電感地通路返回,。重要的是返回信號(hào)以電流分布傳播(圖1),,這意味著相鄰信號(hào)的返回通路可能容易重疊,導(dǎo)致交擾,。
降低交擾的技術(shù)有:線跡間距加大,,增加地線,降低諧波分量和線跡端接技術(shù),。
在高速DSP系統(tǒng)中,,加倍信號(hào)間的線跡間距,可降低環(huán)路重疊,,使交擾降低4倍,。對于差分信號(hào)(Earthnet或USB),建議間距所產(chǎn)生的信號(hào)對應(yīng)具有所需的匹配阻抗,。另外,,關(guān)鍵信號(hào)(即時(shí)鐘)應(yīng)屏蔽,路由信號(hào)在電源和地平板之間的內(nèi)層,,或把一個(gè)地平板放置在關(guān)鍵信號(hào)下面層上,。
在再制板上加信號(hào)線時(shí),應(yīng)包括一個(gè)并聯(lián)地線,。這可能提供高速電流返回通路并在電流環(huán)路中產(chǎn)生最小面積,。這個(gè)附加的通路,確保返回電流不產(chǎn)生大的環(huán)路和拾取噪聲,。
在降低交擾時(shí),,評價(jià)快速沿所引起的諧波和干擾是重要的。例如,,在線跡上增加串聯(lián)終端電阻器,,會(huì)使上升時(shí)間(Tr)減慢,這是有效地降低諧波分量的方法,。噪聲幅度曲線在低頻能較好地衰減諧波分量(圖2),。
線跡可做為傳輸線(在上升時(shí)間Tr小于2倍傳播延遲時(shí))。因此,,應(yīng)保持線跡盡可能的短,。若線跡的長度足以做為傳輸線,則用串聯(lián)終端(電阻器與輸出驅(qū)動(dòng)器串聯(lián))或并聯(lián)終端(在負(fù)載處電阻器到地)接線,。若電阻器與所用線跡PCB阻抗匹配,,則可以降低傳輸線反射和瞬變。
鎖相環(huán)
鎖相環(huán)(PLL)是另一個(gè)重要的噪聲源。在某些DSP中正日益采用模擬和數(shù)字版本PLL(圖3),。隔離到PLL電源時(shí),,用π形濾波器去除高頻噪聲是有效的。但它對去除低噪聲作用不大,,需要用多級濾波器網(wǎng)絡(luò),。然而,在快速開關(guān)電路中,,一個(gè)低壓降(LDO)穩(wěn)壓器是更適合的,,因?yàn)檫@種器件在低頻具有高電源抑制比(PSRR)。若設(shè)計(jì)的系統(tǒng)運(yùn)行在噪聲環(huán)境(如汽車,、電/機(jī)裝置),,具有較大的低頻瞬變,則應(yīng)選擇高PSRR穩(wěn)壓器,。
分離模擬和數(shù)字地對于隔離來自模擬部分的數(shù)字噪聲有幫助。對于低速電路這樣做也是良好的,。然而,,對于高速電路(例如視頻部分)應(yīng)避免分離地??焖匍_關(guān)電流需用最小的電流環(huán)路,,而隔離地阻止來自選擇通路的電流。因此,,將選擇另外通路到源,,這最終導(dǎo)致勢差、電流流和輻射,。在數(shù)字?jǐn)?shù)據(jù)進(jìn)入點(diǎn)把模擬和數(shù)字地短接在一起,,可提供一個(gè)直接通路而不影響低頻信號(hào)。信號(hào)朝實(shí)際的最短返回路徑到源,,而不是短路的通路,。
電容器應(yīng)用
適當(dāng)?shù)貞?yīng)用電容器是降低噪聲的有效方法。去耦電容器提供一個(gè)低阻抗到地通路來旁路不希望的高頻能量,??梢杂皿w電容器來旁路低頻到地,以及用去耦電容器提供本地電荷存儲(chǔ),。
對于去耦電容器沒有最好的值,,這是因?yàn)榉醋饔糜绊憽Mǔ?,電容器阻抗隨頻率和電容降低,。當(dāng)信號(hào)頻率超過諧振頻率時(shí),電容器變成電感而不再是一個(gè)有效的濾波器。盡管低阻抗和更多電荷存儲(chǔ)能降低下降,,但對于高頻信號(hào),,高值電容器不是最佳的。理想地,,在電源地應(yīng)包含一個(gè)高值和一個(gè)較低值電容器,。若不能實(shí)現(xiàn),用一個(gè)0.01mF電容器是一個(gè)可接受的折衷方案,。應(yīng)該用較對大的體電容器,,至少10倍于總?cè)ヱ铍娙萜鳌?/p>
例如,在100KHZ,,100mF電解電容具有0.6Ω左右的等效串聯(lián)電阻(ESR),,同樣值的鉭電容具有0.12Ω左右的ESR,這使得鉭電容更適合體電容器,。對于去耦陶瓷電容優(yōu)于聚酯電容器,。例如,在1MHZ,,0.1mF陶瓷電容器具有0.12Ω左右的ESR,,而1.0mF聚酯電容器具有0.11Ω的ESR。
去耦電容器應(yīng)放置在PCB底端靠近器件引腳處,。對于高速DSP,,去耦電容器應(yīng)放置在每個(gè)電源引腳處。若空間不允許這樣做,,也應(yīng)盡可能地放置在器件周圍,。復(fù)雜DSP去耦的一種有效方法是從對角劃兩個(gè)虛線構(gòu)成一個(gè)X(圖4)。然后獨(dú)立分析4個(gè)區(qū)域的每個(gè)區(qū)域,。
為使得體電容器靠近去耦電容器,,把它們放置在板的頂端。這種定位使線蹤最短,,同時(shí)可降低輻射和寄生電感,。
以TI公司的OMAP5910 DSP為例,特別注意包含數(shù)字PLL和外部存儲(chǔ)器接口的區(qū)域(圖4中左邊區(qū)域),。該器件有13個(gè)芯核電壓引腳,,峰值芯核電流耗電170mA(平均每個(gè)引腳13mA)。在該區(qū)域的3個(gè)芯核電壓引腳包括數(shù)字PLL和外部存儲(chǔ)器接口,,耗電39mA,。為了保證精度,在確定電容器大小時(shí),,增加100%容限(即78mA)是合適的,。必須消除峰值I/O電流,。應(yīng)采用謹(jǐn)慎的方法,假定在此區(qū)域所有54個(gè)I/O線同時(shí)開關(guān)4 mA,,這將導(dǎo)致216 mA通過此區(qū)域的8個(gè)I/O電壓引腳,。
隨著芯核和I/O電壓工作不同頻率,必須用合適大小的電容器去耦電源,。在此實(shí)例中,,用下面的公式計(jì)算,計(jì)算的芯核電容為0.0078mF,對于216mA I/O 電流所需電容為0.22mF:C=I(dv/dt)
其中I為峰值電流,,dv為最大所允許的紋波電壓(假定10mV),,dt為上升時(shí)間(假定1ns,OMAP5910典型值)。
所以,,芯核電容C=78mA×(1ns/10mv)=0.0078mF
在OMAP5910 BGA 封裝中,,對于每個(gè)區(qū)域的4個(gè)電容器都有足夠的空間,沒有一個(gè)是用于每個(gè)芯核電源引腳的,。因此,,為了去耦芯核電壓引腳,最好選擇兩個(gè)電容器,,其總值為 0.0078mF(配置兩個(gè)0.0047mF陶瓷電容器,,以使從引腳到地有最短距離)。
必須考慮開關(guān)頻率,。芯核部分在150MHz開關(guān)轉(zhuǎn)換,而8個(gè)I/O引腳在75MHz開關(guān)轉(zhuǎn)換,??梢杂昧硗鈨蓚€(gè)電容器位置來去耦I(lǐng)/O電壓引腳(即用兩個(gè)自諧波振頻率75MHz以上的0.01mF陶瓷電容器提供0.022mF)。
體電容器值
在此實(shí)例中,,DSP總芯核電壓電流為338mA,。用上面的公式計(jì)算電容為0.0338mF。做為體電容應(yīng)該是10倍去耦電容值,,大約為0.39mF,。對于I/O電壓,進(jìn)行同樣的處理,,得到0.84mF電容,,給出總電容1.23mF。對于體電容器,,每個(gè)提供3.075mF(1.23mF除以4,,然后乘以10),應(yīng)該把它加到每個(gè)區(qū)域上?,F(xiàn)在可得到的最小體電容值是做為表面貼裝元件的4.7mF,,此電容值在本例中工作良好,。如果沒有表面貼裝電解電容,應(yīng)選擇鉭體電容器,。對于4個(gè)區(qū)域的每個(gè)區(qū)域去耦和體電容值可以用這種方法計(jì)算,,并示于圖4。