文獻標識碼: A
文章編號: 0258-7998(2012)03-0075-03
我國幅員遼闊,各種自然災害頻發(fā),,在搶險救災和突發(fā)事件處置中常用的應急供電設(shè)備汽油發(fā)電機比較笨重,、噪音大且釋放有害氣體,鋰電池,、鎳氫電池,、鉛酸電池等連續(xù)供電時間短且在應急場合無法提供充電恢復,。本文提出一種利用PEM燃料電池、鋰電池聯(lián)供的應急供電系統(tǒng),,儲氫容器更換時期間也可以保證連續(xù)供電,,控制系統(tǒng)采用模糊算法,根據(jù)鋰電池SOC,、燃料電池最佳工作狀態(tài)以及負載情況,,進行能量動態(tài)分配與管理。研制了在應急場合使用的樣機,,該系統(tǒng)連續(xù)供電時間長(是目前常用設(shè)備的2~3倍),,無噪音、零排放,,可取得良好的效果,,是搶險救災應付突發(fā)事件的理想應急供電裝備。
1 系統(tǒng)組成
燃料電池應急供電系統(tǒng)組成如圖1所示,。
系統(tǒng)由120 W質(zhì)子膜燃料電池,、燃料電池控制器,、鋰電池及管理系統(tǒng),、能量管單元組成。鋰電池的指標為13.2 V/10 Ah,,以保證燃料電池故障狀態(tài)下或燃料耗盡更換不及情況下應急滿功率支持1 h的戰(zhàn)術(shù)要求,。燃料電池電堆指標:功率為120 W,,輸出電壓為15 V~28 V。燃料電池控制器主要完成對電堆溫度,、輸入氫氣和空氣壓力,、流量、以及電堆異常情況進行控制和監(jiān)測,,并通過CAN總線將信息傳輸至系統(tǒng)控制器,。系統(tǒng)控制器主要完成對負載大小、鋰電池SOC以及燃料電池電堆工況實時檢測并根據(jù)模糊算法動態(tài)進行能量管理,,使應急供電系統(tǒng)個部件工作在最佳狀態(tài),,以提高整機效率和關(guān)鍵部件使用壽命。
2 電路設(shè)計
2.1 充電與電池管理電路
鋰電池充電電路如圖2所示,。直流電壓經(jīng)過隔離二極管D5加到MAX1873的15腳,。Ql為充電驅(qū)動信號輸出開關(guān)管。R4為充電電流檢測電阻,,用于檢測輸出電流的大小,。R2為系統(tǒng)電流的檢測電阻。R5、R6為輸出充電電壓調(diào)整電阻,。
燃料電池輸出的15 V~28 V電壓經(jīng)過隔離二極管D5和總電流檢測電路,,一路經(jīng)過R2、DC/DC電路至輸出端,,另一路通過Q1,、電感L1、D6和R4向鋰電池充電,。R4上的電壓與充電電流成正比,,經(jīng)電壓誤差放大器放大,轉(zhuǎn)換成直流分量輸人微處理器,,微處理器將從MAX1873的14腳輸出反向控制電壓,,使Ql的導通電流減小。如果流經(jīng)R4上的電流過小,,由MAX1873的14腳輸出控制電壓使Ql的電流相應增加,,則會使電池組有一個恒定的電流值。當電流很小且達到充電電流最小值或0時,,MAX1873從14腳輸出低電平的脈沖控制信號,,關(guān)斷BGl,停止對電池充電,。當控制輸入端為低電平時,,BG2導通,充電控制腳6腳(ICHG/EN)為低電平,,14腳輸出低電平,,BG1關(guān)斷,停止充電,,此時充電電流僅為1 μA,,處于關(guān)閉狀態(tài)(充電被禁止)。
2.2 直流變換與控制電路
DC/DC變換電路采用XL4012集成變換器,,輸入電壓3.6 V~36 V,,2 800 kHz的開關(guān)頻率,輸出電壓可以從0.8 V~28 V可調(diào),,轉(zhuǎn)換效率高達95%,,最大輸出電流12 A,外圍電路簡單,。
應急供電系統(tǒng)需要檢測的參數(shù)比較多:燃料電池的輸出電壓,、輸出電流;充電與BMS的充電電流,、電池電壓和電池SOC;輸出端的輸出電流、輸出電壓,。因此需要擴展A/D接口,,系統(tǒng)控制采用89S51CPU,A/D采用TLV2543芯片,,該芯片有10路模擬電壓輸入,,與單片機采用串行接口,占用口線資源較少,,轉(zhuǎn)換速度比較快,,顯示采用LCD1602液晶顯示,不采用背光時液晶動態(tài)電流不大于5 mA,,主要顯示燃料電池工作狀態(tài),,鋰電池SOC及充放電情況,輸出電壓,、輸出電流信息,,整機效率等供電信息。
3 模糊控制算法
讓燃料電池處于最佳狀態(tài),,同時讓鋰電池荷電狀態(tài)在SOCmin以上,。 以分配給燃料電池的功率份額為約束條件,調(diào)節(jié)鋰電池的輸出功率,。對鋰電池而言, 當蓄電池SOC最小極限值(SOCmin)小于或等于30%時,,鋰電池必須充電;當SOC在50%~70%時,,視負載需求功率情況,,可以充電也可以放電;當SOC大于90%時不充電,。以負載功率Pg和鋰電池荷電狀態(tài)SOC為模糊控制的輸入變量,,以燃料電池分配輸出功率Pfc和鋰電池輸出功率Pb為模糊控制器的輸出變量。模糊輸入變量Pg和SOC基本論域為[0,,100] W和[30,,90]%,將輸入變量模糊化,,模糊子集為{ZO(零),, PS(正小),,PM(正中),,PB(正大)};模糊輸出變量Pb的論域為[-100,,110] kW,,模糊子集也為{NB(負大),NM(負中),NS(負?。?,ZO(零),PS(正?。?,PM(正中),PB(正大)},,模糊輸出變量Pfc的論域為[0,,110] kW,模糊子集也為{ZO(零),,PS(正?。琍M(正中),,PB(正大)},。
模糊控制器以負載功率Pg和鋰電池的荷電狀選擇輸入、輸出模糊變量的隸屬度函數(shù)為三角形如圖3,、圖4,、圖5和圖6所示。
5 系統(tǒng)仿真
在Matlab仿真系統(tǒng)中建立模糊控制器,,取模糊控制的輸入變量目標功率Pg和鋰電池的荷電狀態(tài)SOC的論域為[-100,,110] W和[30,90]%,,取模糊控制器的輸出變量燃料電池分配輸出功率Pfc,、鋰電池分配輸出功率Pb的論域分別為[0,110] kW,、[-100,,110] W。鋰電池為10 Ah/13.2 V,,電池初始荷電狀態(tài)SOC=60%,。同時在 Matlab/Simulink取時間為0~15 min,其仿真波形如圖8所示,。
6 樣機測試與評估
根據(jù)電池SOC和負載大小利用模糊算法將PEM燃料電池和鋰電池能量進行動態(tài)分配和管理,,研制了樣機,實際測試表明:整機供電效率在90%以上,,比功率為120 W/500 g,。在鋰電池初始SOC=80%時可為容量為600升的金屬儲氫罐連續(xù)供電時間16 h左右。連續(xù)工作時間以及維護等方面比傳統(tǒng)應急供電裝備性能有極大提高,,目前已經(jīng)在進行產(chǎn)業(yè)化,,極具推廣價值,。
參考文獻
[1] 紀小龍,楊靜.燃料電池蓄電池混合供電系統(tǒng)[J].通信電源技術(shù),,2010,,27(2):39-43.
[2] 王文博.燃料電池的發(fā)展方向[J].高科技與產(chǎn)業(yè)化,2010(01):118.
[3] 金科阮,,新波.復合式燃料電池供電系統(tǒng)[J].電工技術(shù)學報,2008,,23(3):92-98.