《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 面向2G/3G/4G/WLAN融合接入應(yīng)用的光載無線分布式天線系統(tǒng)
面向2G/3G/4G/WLAN融合接入應(yīng)用的光載無線分布式天線系統(tǒng)
來源:《中興通信技術(shù)》
作者:徐坤 紀(jì)越峰 戴一堂
摘要: 隨著話音業(yè)務(wù)的成熟,,對IP 和高速數(shù)據(jù)業(yè)務(wù)的支持已經(jīng)成為移動(dòng)通信系統(tǒng)演進(jìn)的方向,也成為第代移動(dòng)通信系統(tǒng)的主要業(yè)務(wù)特征。 然而,2G/3G 網(wǎng)絡(luò)對數(shù)據(jù)業(yè)務(wù)的支持有廣域低速的特征,,為了實(shí)現(xiàn)高速數(shù)據(jù)傳輸,無線移動(dòng)通信技術(shù)與技術(shù)相結(jié)合產(chǎn)生了無線局域網(wǎng)等無線接入技術(shù),,其應(yīng)用已經(jīng)成為高速數(shù)據(jù)業(yè)務(wù)的重要接入手段,。但是,WLAN 的覆蓋范圍小,,只能提供短距離(100 m 左右) 的覆蓋,。
Abstract:
Key words :

隨著話音業(yè)務(wù)的成熟,對IP 和高速數(shù)據(jù)業(yè)務(wù)的支持已經(jīng)成為移動(dòng)通信系統(tǒng)演進(jìn)的方向,,也成為第代移動(dòng)通信系統(tǒng)的主要業(yè)務(wù)特征,。

然而,2G/3G 網(wǎng)絡(luò)對數(shù)據(jù)業(yè)務(wù)的支持有廣域低速的特征,為了實(shí)現(xiàn)高速數(shù)據(jù)傳輸,,無線移動(dòng)通信技術(shù)與技術(shù)相結(jié)合產(chǎn)生了無線局域網(wǎng)無線接入技術(shù),,其應(yīng)用已經(jīng)成為高速數(shù)據(jù)業(yè)務(wù)的重要接入手段。但是,,WLAN 的覆蓋范圍小,,只能提供短距離(100 m 左右) 的覆蓋。

為了進(jìn)一步提高數(shù)據(jù)的傳輸速率,,實(shí)現(xiàn)信號(hào)的廣域覆蓋,,提高通信的靈活性,運(yùn)營商開始將目光轉(zhuǎn)向4G,??紤]到多種移動(dòng)通信系統(tǒng)將長期并存,因此為了提供更具有針對性的服務(wù),,中國移動(dòng)提出了“2G,、3G、4G,、”四網(wǎng)協(xié)同的發(fā)展戰(zhàn)略[1],。四網(wǎng)業(yè)務(wù)的融合接入網(wǎng)的帶寬和性能有了更高的要求,傳統(tǒng)的接入網(wǎng)已無法滿足用戶不斷提高的帶寬和性能需求,。

微波光子學(xué)充分利用光子學(xué)寬帶,、高速、低功耗等優(yōu)點(diǎn)來實(shí)現(xiàn)微波信號(hào)的產(chǎn)生,、傳輸,、處理和控制,以此為基礎(chǔ)的微波光波融合系統(tǒng)充分發(fā)揮了無線靈活接入和光纖寬帶傳輸?shù)母髯詢?yōu)勢,,可以實(shí)現(xiàn)單純無線技術(shù)和光纖技術(shù)難以完成甚至無法完成的信息處理與傳輸組網(wǎng)功能[2-3],。由此可見,基于光載無線(ROF) 系統(tǒng)的分布式天線網(wǎng)絡(luò)將在四網(wǎng)融合的接入中發(fā)揮極其重要的作用,。

ROF分布式天線網(wǎng)絡(luò)的一般結(jié)構(gòu)如圖1 所示,。利用模擬直調(diào)光模塊將射頻信號(hào)調(diào)制到光載波上,經(jīng)過光纖傳輸至遠(yuǎn)端天線單元,,然后利用光/電轉(zhuǎn)換和放大器放大后直接由遠(yuǎn)端天線單元的天線發(fā)射進(jìn)行無線覆蓋,。該方式具有成本低廉、覆蓋廣泛以及控制靈活等特點(diǎn),,在礦井,、隧道和鐵路等工程領(lǐng)域,以及商場,、機(jī)場和會(huì)議中心等公共熱點(diǎn)區(qū)域都具有廣泛的應(yīng)用市場,,一些廠家已開始進(jìn)行了模塊和系統(tǒng)的研制與推廣應(yīng)用,。

然而,目前的光載無線分布式天線系統(tǒng)成本較高,。成本主要取決于系統(tǒng)中使用的光收發(fā)模塊,。為了降低系統(tǒng)成本,我們基于商用的千兆以太網(wǎng)光組件,,經(jīng)過電路設(shè)計(jì)和改進(jìn)實(shí)現(xiàn)了低成本,、寬帶的模擬光收發(fā)模塊,為光載無線分布式天線網(wǎng)絡(luò)的推廣應(yīng)用打下了基礎(chǔ),。此外,,光載無線鏈路中存在很多噪聲,,光學(xué)損耗衰減了射頻信號(hào)功率同時(shí)增加了噪聲指數(shù)(NF),。為了提高系統(tǒng)的性能,研究光損耗對光載無線分布式天線網(wǎng)絡(luò)的影響,,具有十分重要的意義,。同時(shí),鏈路中的受激布里淵散射

也對傳輸性能產(chǎn)生不利影響,,需要對其進(jìn)行分析和抑制,,以提高網(wǎng)絡(luò)性能。針對點(diǎn)到多點(diǎn)的多業(yè)務(wù)融合接入及分布式傳輸需求,,本文提出了面向2G/3G/4G/WLAN 四網(wǎng)融合接入應(yīng)用的副載波復(fù)用和波分復(fù)用(SCM-WDM)結(jié)合技術(shù),。

1.低成本、寬帶的光收發(fā)模塊研制

隨著無線業(yè)務(wù)不斷增加的需求,,下一代的ROF 應(yīng)用需要支持更高的工作頻率和更大的帶寬,。同時(shí),系統(tǒng)中,,光收發(fā)模塊成本較高,,是大規(guī)模應(yīng)用的主要限制因素[4];另一方面,,隨著千兆以太網(wǎng)(GbE) 技術(shù)的發(fā)展,,商用千兆以太網(wǎng)光器件的調(diào)制帶寬高達(dá)8 GHz,為低成本ROF 的傳輸帶來了新的機(jī)遇,。因此,,采取商用千兆以太網(wǎng)光器件來設(shè)計(jì)低成本、寬帶的光收發(fā)模塊將是一個(gè)非常重要的工作,。本文提出了一種基于商用千兆以太網(wǎng)光器件的低成本,、寬帶收發(fā)模塊。

收發(fā)模塊主要由光學(xué)組件,,射頻放大和偏置控制電路組成,。發(fā)送端光學(xué)子組件(TOSA) 是針對10 Gb/s 應(yīng)用,、波長為1 310 nm、斜率效率為的分布反饋式(DFB) 激光器,。接收端光學(xué)子組件(ROSA) 是針對10 Gb/s 應(yīng)用,、響應(yīng)度為的光電探測器。為了簡化設(shè)計(jì),,設(shè)計(jì)使用激光器驅(qū)動(dòng)集成電路來提供偏置電流進(jìn)行自動(dòng)功率控制(APC),。為了提高收發(fā)器的線性度,移去商用中線性度較差的轉(zhuǎn)阻放大器,,并使用了100 Ω 的高精度電阻Rd 將電流信號(hào)轉(zhuǎn)換成電壓信號(hào),。

匹配激光器和驅(qū)動(dòng)器是大帶寬、低損耗模擬光發(fā)送模塊設(shè)計(jì)中巨大的挑戰(zhàn),。為了達(dá)到寬帶和易于實(shí)現(xiàn)的目的,,在TOSA 中采用了25 Ω的傳輸線系統(tǒng)以匹配激光器和驅(qū)動(dòng)器。首先,,切比雪夫多節(jié)傳輸線用于在頻率0.3 GHz~范圍內(nèi),,將50 Ω 系統(tǒng)匹配到25 Ω 子系統(tǒng)。然后串聯(lián)一個(gè)20 Ω的電阻作為匹配電阻連接到激光器以吸收反射的能量,。以這種方式,,能夠很容易地實(shí)現(xiàn)匹配網(wǎng)絡(luò),同時(shí)很大程度地提高調(diào)制效率,。此外,,在接收端的光學(xué)子組件中,采用100 Ω的傳輸線系統(tǒng)以匹配探測器和放大器,。探測之后,,將100 Ω的子系統(tǒng)匹配到50 Ω,并使用寬帶的低噪放大器(LNA)放大探測的射頻信號(hào),。項(xiàng)目研制的收發(fā)器模塊如圖2 所示,。

測得光收發(fā)模塊的頻率響應(yīng)如圖3 所示。端到端的ROF 鏈路增益是-34 dB,,3 dB 帶寬是4.3 GHz,,能夠滿足面向2G/3G/4G/WLAN 四網(wǎng)融合接入應(yīng)用的光載無線分布式天線網(wǎng)絡(luò)需求。


2.光損耗對傳輸性能影響的分析

系統(tǒng)與分布式天線網(wǎng)絡(luò)的結(jié)合,,可以擴(kuò)大覆蓋面積,,提高系統(tǒng)容量,應(yīng)用于多種場所,,如機(jī)場,、商場、智能樓宇等,。這種方法可以大大減少遠(yuǎn)端天線單元的復(fù)雜性,,并實(shí)現(xiàn)系統(tǒng)的集中式管理,。然而,鏈路中存在很多噪聲,,光學(xué)損耗衰減了射頻信號(hào)功率同時(shí)增加了噪聲指數(shù)(NF),,使得信號(hào)被噪聲淹沒。

光載無線系統(tǒng)中的光損耗主要來自于網(wǎng)絡(luò)中的光學(xué)器件,。在使用波分復(fù)用(WDM) 技術(shù)的光載無線分布式天線網(wǎng)絡(luò)的星型拓?fù)浣Y(jié)構(gòu)中,,陣列波導(dǎo)光柵(AWG)具有很大的插入損耗[5]。在其他的總線型或樹型結(jié)構(gòu)中,,光耦合器光分插復(fù)用器也將引入大量的光損耗[6],。如果拓?fù)浣Y(jié)構(gòu)較為復(fù)雜,且沒有采用光放大器,,光纖傳輸?shù)男盘?hào)將被衰減到一個(gè)較低的水平,,被光纖鏈路中的噪聲淹沒。因此,,研究光損耗對光載無線分布式天線網(wǎng)絡(luò)傳輸性能的影響,,具有十分重要的意義,。本文研究了光損耗對光載無線分布式天線網(wǎng)絡(luò)傳輸?shù)?a class="keyword" style="color: rgb(51, 51, 51); margin: 0px; padding: 0px; line-height: 20px; text-decoration: none; border-bottom-width: 1px; border-bottom-style: dotted; " target="_blank">Wi-Fi 信號(hào)的影響,,系統(tǒng)結(jié)構(gòu)如圖4所示。

項(xiàng)目使用改造的WLAN 接入點(diǎn)設(shè)備作為Wi-Fi 信號(hào)源,。從產(chǎn)生的射頻信號(hào)經(jīng)光收發(fā)模塊調(diào)制到光載波,,在單模光纖(SMF) 中傳輸后,在遠(yuǎn)端經(jīng)光收發(fā)模塊轉(zhuǎn)換為電信號(hào),,經(jīng)功率放大器(PA) 放大后,,從天線輻射出去。對于上行鏈路,,因?yàn)榻邮招盘?hào)太弱,,先由40 dB 增益的低噪放大器(LNA) 放大,然后調(diào)制到光載波上并被傳送到AP 端,。為了補(bǔ)償光電和電光轉(zhuǎn)換的損耗,,光收發(fā)模塊中的功率放大器增益設(shè)置為,從而使得光鏈路的整體增益為0 dB,?;诖讼到y(tǒng),項(xiàng)目研究了上,、下行鏈路的光損耗容限,。

上行、下行鏈路中仿真信噪比和實(shí)際吞吐量與光損耗的關(guān)系如圖5所示,。測量結(jié)果表明,,下行鏈路的光損耗容限可以達(dá)到20 dB 以上,。此外,當(dāng)光損耗超過23 dB 時(shí),,測得的吞吐量將迅速下降5 Mb/s,,這是由觸發(fā)開關(guān)引起的。因?yàn)樯漕l功率太低,,無法觸發(fā)射頻開關(guān),,所以下行鏈路的光損失容限要高于測量結(jié)果。此外還測量了上行鏈路的光損耗容限,,當(dāng)光損耗低于25 dB 時(shí),,數(shù)據(jù)的吞吐量保持在24 Mb/s 附近,而隨著光損耗的增加,,吞吐量跳變到18 Mb/s,。實(shí)驗(yàn)結(jié)果符合ROF 系統(tǒng)中理論仿真的光損耗容限。

3.受激布里淵散射對傳輸性能影響的分析和抑制

光纖中受激布里淵散射(SBS) 效應(yīng)所帶來的負(fù)面影響限制了光纖輸入端口所能夠容忍的最大輸入光功率,,當(dāng)輸入光功率超過SBS 閾值一定程度時(shí),,就會(huì)產(chǎn)生功率飽和效應(yīng),導(dǎo)致接收端口難以獲取相應(yīng)的光功率,,并且受激布里淵散射會(huì)導(dǎo)致接收信號(hào)的噪聲急劇增大,,導(dǎo)致鏈路性能的惡化[7]。

本文提出了一種基于菲涅爾反射和抑制載波調(diào)制的SBS 增益譜/損耗譜的測量方法[8],,具有高精度,、單端測量等優(yōu)點(diǎn),結(jié)構(gòu)如圖6 所示,??烧{(diào)諧光源(TLS)產(chǎn)生線寬低于300 kHz 的直流光,微波源產(chǎn)生頻率可控的微波,,并以載波抑制(OCS) 的方式調(diào)制到光載波上,。通過控制微波的頻率可以得到頻率間隔可調(diào)的雙邊帶信號(hào),經(jīng)放大后,,進(jìn)入到被測光纖,。由于光纖端面會(huì)產(chǎn)生菲涅爾反射現(xiàn)象,反射光將背向進(jìn)入到被測光纖,。這兩部分光在被測光纖中逆向傳輸,,當(dāng)雙邊帶的頻率間隔正好等于被測光纖的布里淵頻移,并且前向泵浦光功率高于SBS 閾值的時(shí)候,,就會(huì)出現(xiàn)效應(yīng),。泵浦光的上邊帶對探測光的下邊帶有放大作用,而泵浦光的下邊帶對探測光的上邊帶有衰減作用,。因此只要通過調(diào)節(jié)微波源頻率,,并且分別檢測上下邊帶的光功率,,就可以很容易的得到SBS 的增益譜和損耗譜。

用這種測量方法,,分別得到了標(biāo)準(zhǔn)單模光纖(SSMF) 和高非線性光纖(HNLF)中SBS 效應(yīng)的增益譜和損耗譜,,如圖7 所示。圖給出了TLS 波長為1 552.84 nm 時(shí)的增益譜,,從譜線形狀來看,,實(shí)驗(yàn)結(jié)果很好的吻合了理論上的洛侖茲線型,并且不同泵浦功率對應(yīng)的布里淵增益系數(shù)峰值也不同,。同樣,,當(dāng)波長調(diào)到1 552.71 nm 的時(shí)候,可以測得如圖7(b) 所示的SBS 損耗譜,,并且布里淵損耗系數(shù)峰值也會(huì)隨著泵浦功率的增加而增加,。

目前抑制SBS 效應(yīng)的方法主要有增加激光器線寬。為了研究激光器線寬對SBS 閾值的影響,,實(shí)驗(yàn)測試了信號(hào)在鏈路中傳輸時(shí)鏈路中光功率的監(jiān)測情況,,測試結(jié)構(gòu)圖如圖所示。矢量信號(hào)分析儀產(chǎn)生標(biāo)準(zhǔn)信號(hào),,調(diào)制到光載波上傳輸,,摻鉺光纖放大器(EDFA)用來調(diào)節(jié)入纖光功率。光信號(hào)經(jīng)過環(huán)行器和耦合器進(jìn)入被測光纖中傳輸,,被探測器接收恢復(fù)出電信號(hào),。實(shí)驗(yàn)中直調(diào)激光器的線寬約為10 MHz,,而窄線寬光纖激光器的線寬約為50 kHz,。實(shí)驗(yàn)中測試了鏈路各監(jiān)測點(diǎn)光功率的變化情況,在環(huán)行器后用PM1 來監(jiān)測入纖光功率,,經(jīng)過被測光纖后用監(jiān)測透射光功率,,利用PM3 監(jiān)測光纖背向散射光的光功率。

測試結(jié)果如圖9 所示,,其中,,圖8和圖9(b)分別對應(yīng)于激光器線寬為的直接調(diào)制和50 kHz 的外調(diào)制。由圖9(a) 可以看出,,當(dāng)入纖光功率低于13.5 dBm 的時(shí)候,,光纖反射光功率和透射光功率緩慢增加,當(dāng)入纖光功率高于13.5 dBm 的時(shí)候,,其中反射光功率發(fā)生急劇變化,,快速增加,并且在17.5 dBm 的時(shí)候與透射光功率均等,,可以看出單模光纖的SBS 閾值約為13.5 dBm,。由圖9(b) 可以看出,,激光器線寬為50 kHz 條件下,閾值在9.5 dBm 附近,,比10 MHz 線寬時(shí)降低了4 dB 左右,。

4. 2G/3G/4G/WLAN 多業(yè)務(wù)分布式傳輸?shù)腟CM-CWDM技術(shù)

隨著中國移動(dòng)推出四網(wǎng)協(xié)同的發(fā)展戰(zhàn)略,無線業(yè)務(wù)應(yīng)用正趨于多樣化,。2G 網(wǎng)絡(luò)繼續(xù)向低端用戶提供移動(dòng)語音業(yè)務(wù),,3G 網(wǎng)絡(luò)在全球范圍內(nèi)正得到大規(guī)模部署,同時(shí)能夠支持更高無線接入速率的4G 網(wǎng)絡(luò)也在逐漸鋪開,。此外,,WLAN 作為低成本高效率的流量承載解決方案,正進(jìn)入快速發(fā)展的時(shí)期,。通過不同的網(wǎng)絡(luò)向多個(gè)基站配置多制式的無線業(yè)務(wù),,將導(dǎo)致大量的資本輸出(CAPEX)和運(yùn)營支出(OPEX)。針對這一問題,,光載無線分布式天線系統(tǒng)是最有吸引力的解決方案[9],。前面已經(jīng)介紹了實(shí)現(xiàn)低成本、高性能的光載無線分布式天線網(wǎng)絡(luò)的關(guān)鍵技術(shù),,為了面向四網(wǎng)融合接入應(yīng)用,,項(xiàng)目采用副載波復(fù)用(SCM) 和波分復(fù)用技術(shù)的結(jié)合[10],充分利用了光纖的寬帶特性,。

副載波復(fù)用系統(tǒng),,在發(fā)送端將各路待傳遞的信息分別調(diào)制在不同的射頻(即副載波)上,然后將各個(gè)帶有信號(hào)的副載波合起來,,調(diào)制一個(gè)光載波,;在接收端,經(jīng)光電檢測得到全部的副載波,,然后用電學(xué)的方法將各路副載波分開,。

SCM技術(shù)非常容易實(shí)現(xiàn)寬帶傳輸,它可以同時(shí)傳輸?shù)退?、高速?shù)據(jù)以及模擬視頻信號(hào),。SCM 光纖通信技術(shù)容易實(shí)現(xiàn),價(jià)格低廉,,可與現(xiàn)有的各種通信網(wǎng)兼容,,且容易實(shí)現(xiàn)寬帶及插入業(yè)務(wù)方便,是實(shí)現(xiàn)多業(yè)務(wù)融合接入的理想選擇,。然而,,SCM 技術(shù)仍然局限于點(diǎn)到點(diǎn)的傳輸,不能夠滿足在復(fù)雜結(jié)構(gòu)下的低成本組網(wǎng)需求。

正因如此,,本文提出了一種副載波復(fù)用結(jié)合粗波分復(fù)用方式的多業(yè)務(wù),、分布式傳輸系統(tǒng),系統(tǒng)結(jié)構(gòu)如圖10 所示,。

c

該系統(tǒng)主要由星型網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)組成,,中心局(CO) 通過WDM 設(shè)備連接到多個(gè)遠(yuǎn)端天線單元(RAU)。對于一個(gè)遠(yuǎn)端天線單元,,使用SCM 技術(shù),,每個(gè)波長承載多制式的無線業(yè)務(wù),如2G/3G/4G/WLAN,。在中心局,,多制式的無線業(yè)務(wù)通過低成本直調(diào)的光收發(fā)模塊調(diào)制到光載波上,然后粗波分復(fù)用器(CWDM) 將各路信號(hào)復(fù)用到一根標(biāo)準(zhǔn)單模光纖(SMF) 中傳輸,。在遠(yuǎn)端天線單元(RAU),,多路信號(hào)經(jīng)解復(fù)用器后分配到光收發(fā)模塊轉(zhuǎn)換成射頻信號(hào),再經(jīng)過電放大器放大后由天線發(fā)射,。同樣,,上行信號(hào)被天線接收后注入到光收發(fā)模塊,并由粗波分復(fù)用(CWDM) 進(jìn)入光纖,,回傳到中心控制局,,控制局內(nèi)光收發(fā)模塊實(shí)現(xiàn)光/電轉(zhuǎn)換,得到射頻信號(hào)再進(jìn)行后續(xù)處理,。

基于SCM-WDM 的光載無線分布式天線網(wǎng)絡(luò),,通過WDM 技術(shù),將大量的遠(yuǎn)端天線單元連接到中心局,,增加了網(wǎng)絡(luò)的覆蓋范圍,,而且很大程度降低了無線接入網(wǎng)的成本。

為了評(píng)估SCM-WDM 系統(tǒng)的傳輸性能,,項(xiàng)目建立了基于四信道的結(jié)構(gòu)和四制式的無線業(yè)務(wù)副載波復(fù)用的ROF-DAS 系統(tǒng),,系統(tǒng)結(jié)構(gòu)如圖11 所示。四種信號(hào)分別是的EDGE-8PSK 信號(hào),、的WCDMA-QPSK 信號(hào)、2.3 GHz 的信號(hào)和2.412 GHz 的信號(hào),。

圖12 給出了測得的每種業(yè)務(wù)傳輸?shù)恼`差向量幅度(EVM) 值,,包括使用SCM 技術(shù)和未使用SCM 技術(shù)的情況。由圖12 可以看出,,上,、下行鏈路的性能之間沒有明顯差別,同時(shí)四種業(yè)務(wù)的EVM 曲線是相似的。在射頻輸入功率較低時(shí),,隨著功率的增加,,性能得到提高,當(dāng)功率增加到一定值是,,由于非線性的引入,,EVM 性能將會(huì)隨著功率的增加而惡化。在的輸入功率,,802.11g 64QAM,、、WCDMA 和EDGE 實(shí)現(xiàn)了最好的EVM 值,,分別是0.75% ,、、1.1% 和0.5% ,,符合無線標(biāo)準(zhǔn)的相關(guān)規(guī)定,。表明基于SCM-WDM 技術(shù)的光載無線分布式天線網(wǎng)絡(luò)能夠?qū)崿F(xiàn)多制式無線業(yè)務(wù)上下行鏈路的高性能傳輸。

5 結(jié)束語

本文主要介紹了低成本,、高性能,、寬帶光載無線系統(tǒng)的幾項(xiàng)關(guān)鍵技術(shù):低成本、寬帶的光收發(fā)模塊電路設(shè)計(jì)與研制,,鏈路中光損耗和受激布里淵散射效應(yīng)對信號(hào)傳輸性能的分析,。針對面向2G/3G/4G/WLAN 四網(wǎng)融合接入的應(yīng)用需求,本文提出了副載波復(fù)用結(jié)合波分復(fù)用的技術(shù),,實(shí)現(xiàn)了多制式無線業(yè)務(wù)點(diǎn)到多點(diǎn)的分布式混合傳輸,。為光載無線分布式天線系統(tǒng)的廣泛應(yīng)用提供了有力的支撐和推動(dòng)。

6 參考文獻(xiàn)

[1] 王少波, 馮傳奮, 付宏志, 等. GSM/TD 與WLAN 網(wǎng)絡(luò)深度融合方案研究[J]. 電信工程技術(shù)與標(biāo)準(zhǔn)化, 2011(2):32-35.

[2] SEEDS A J, WILLIAMS K J. Microwave Photonics [J]. Journal of Lightwave Technology, 2006, 24(12): 4628-4641.

[3] TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept [J]. IEEE Transactions on Microwave Theory and Techniques, 2005,53(3-2): 1009-1020.

[4] SAUER M, KOBYAKOV A. Low-cost radio-over-fiber links [C]//Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS’07), Oct 21-25, 2007, Lake Buena Vista, FL,USA. Piscataway, NJ,USA: IEEE, 2007:333-334.

[5] SUN Xiaoqiang, XU Kun, SHEN Xi, et al. New hierarchical architecture for ubiquitous wireless sensing and access with improved coverage using CWDM-ROF links [J]. IEEE/ OSA Journal Optical Communications Networking, 2011,3(10): 790-796.

[6] ZHANG Xiupu, LIU Baozhu, YAO Jianping, et al. A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture [J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(8): 929-937.

[7] LE BRAS H, MOIGNARD M, CHARBONNIER B. Brillouin scattering in radio over fiber transmission [C]//Proceedings of the Optical Fiber Communication Conference & Exposition Optical Fiber Communication Conference (OFC’07), Mar 25-29, 2007, Anaheim, CA,USA. Piscataway, NJ,USA: IEEE, 2007:3p.

[8] SUN Xiaoqiang, XU Kun, PEI Yinqing, et al. Characterization of SBS gain and loss spectra using Fresnel reflections and interaction of two sidebands [C]//Proceedings of the Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’10), Mar 21-25, 2010, San Diego, CA,USA. Piscataway, NJ,USA: IEEE, 2010:3p.

[9] ATTAR A, LI H, LEUNG V C M. Applications of fiber-connected distributed antenna systems in broadband wireless access [C]// Proceedings of the International Conference on Computing, Networking and Communications(ICNC’12), Jan 30- Feb 2, 2012, Maui, HI,USA. Piscataway, NJ,USA: IEEE, 2012:623-627.

[10] MORANT M, QUINLAN T, LLORENTE R, et al. Full standard triple-play bi-directional and fullduplex CWDM transmission in passive optical networks [C]//Proceedings of the Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC’  11), Mar 6-11, 2011, Los Angeles, CA, USA. Piscataway, NJ,USA: IEEE, 2011:3p.


此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。