《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于CQI上報(bào)的TD-LTE系統(tǒng)CCE資源分配算法
基于CQI上報(bào)的TD-LTE系統(tǒng)CCE資源分配算法
來源:電子技術(shù)應(yīng)用2013年第6期
李小文,, 羅 佳
重慶郵電大學(xué) 通信與信息工程學(xué)院, 重慶400065
摘要: 為提高TD-LTE分時(shí)長期演進(jìn)(Time Division Long Term Evolution)系統(tǒng)中終端的盲檢測的成功率,,并在此基礎(chǔ)上提高吞吐量及控制信道單元CCE(Control Channel Element)的資源利用率,在傳統(tǒng)算法的基礎(chǔ)上,,提出了一種網(wǎng)絡(luò)端根據(jù)終端上報(bào)的信道質(zhì)量指示CQI(Channel Quality Indication)自適應(yīng)地進(jìn)行CCE聚合等級選擇的算法,其實(shí)現(xiàn)復(fù)雜度極低,。從理論上詳細(xì)分析了該算法的原理和性能,。仿真結(jié)果驗(yàn)證了該算法的可行性和有效性,系統(tǒng)性能得到了改善,。
關(guān)鍵詞: 2.5G3G TD-LTE CCE CQI 吞吐量
中圖分類號: TN929.5
文獻(xiàn)標(biāo)識碼: A
文章編號: 0258-7998(2013)06-0110-04
CCE resource allocation based on reported CQI for TD-LTE system
Li Xiaowen, Luo Jia
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract: In order to improve the success ratio of UE blind detection, throughput and the CCE(Control Channel Element) resources utilization for TD-LTE system, one modified method which is based on reported CQI(Channel Quality Indicator) by UE to make selection of CCE aggregation is proposed. Its implementation complexity is very low. The article theoretically analyzed in detail the principles and performance of the algorithm. The simulation results verify the feasibility and effectiveness of this modified method, the system performance is improved as well.
Key words : TD-LTE; CCE; CQI; throughput; aggregation level; blind detection

    在LTE系統(tǒng)中,,CCE是承載控制信息所用的物理資源,被上下行調(diào)度共用[1],。下行控制信息DCI(Downlink Control Information)承載了上下行調(diào)度等大量重要的控制信息,,是接收端用戶實(shí)現(xiàn)數(shù)據(jù)解調(diào)的重要依據(jù)。用戶終端UE(User Equipment)通過盲檢測得到所需的DCI信息,。若所分配CCE資源不足,,則會直接導(dǎo)致UE盲檢測成功率的下降,若分配的CCE數(shù)量太多,,則會造成資源的浪費(fèi)使資源利用率下降,,從而導(dǎo)致系統(tǒng)性能下降。因此,,承載DCI的CCE資源的分配就顯得至關(guān)重要,。

     傳統(tǒng)的實(shí)現(xiàn)方法是通過高層配置的相關(guān)參數(shù)來確定用于物理下行控制信道PDCCH(Physical Downlink Control Channel)的正交頻分復(fù)用OFDM(Orthogonal Frequency Division Multiplex)符號數(shù),并根據(jù)該數(shù)計(jì)算用于承載PDCCH映射的資源粒子RE(Resource Element)數(shù),,最后通過RE數(shù)來為各個(gè)PDCCH配置盡可能大的PDCCH格式,,即選擇盡可能大的聚合等級。這種實(shí)現(xiàn)方法的優(yōu)點(diǎn)是易于實(shí)現(xiàn),,缺點(diǎn)是PDCCH資源分配不合理,。會造成當(dāng)信道條件比較好時(shí)所需分配資源可以少一些,但實(shí)際則分配了較多的資源,造成了資源的浪費(fèi),;當(dāng)信道條件比較差時(shí),,需要較多的資源來保證傳輸?shù)目煽啃裕?dāng)有多種DCI格式復(fù)用時(shí),,則會造成PDCCH的阻塞率增加,,導(dǎo)致終端的盲檢測成功率降低。
    基于上述方法所存在的問題,,本文提出了一種自適應(yīng)功能的CCE分配方法,,即結(jié)合CQI值高效分配CCE的方法。該方法不僅使得CCE資源得到了合理的利用,,而且使終端的盲檢測成功率也得到了提高,,從而使系統(tǒng)性能得到了改善。
1 系統(tǒng)模型及常規(guī)算法分析
1.1 下行物理控制信道介紹

     TD-LTE定義了三種物理控制信道類型,,物理控制格式指示信道PCFICH(Physical Control Format Indicator Channel),,物理HARQ指示信道PHICH(Physical HARQ Indicator Channel)和PDCCH[2]。它們用于承載下行數(shù)據(jù)傳輸?shù)恼{(diào)度信息,、上行數(shù)據(jù)傳輸?shù)腍ARQ應(yīng)答信息,、上行功率控制命令等,這些控制信令由物理層或媒體接入MAC(Medium Access Control)層產(chǎn)生[3],。LTE系統(tǒng)的傳輸帶寬是有限的,,通常配置下行控制信道占用一個(gè)下行子幀的前1~3個(gè)OFDM符號[4]。
    表1為用于PDCCH傳輸?shù)腛FDM符號個(gè)數(shù),,由此可以看出,一個(gè)子幀用于PDCCH傳輸?shù)淖畲蟮腛FDM符號個(gè)數(shù),,為了最大程度地利用傳輸帶寬,必須在有效帶寬范圍內(nèi)讓承載PDCCH的OFDM符號數(shù)最少,。

    PDCCH用于承載一個(gè)或多個(gè)終端的DCI信息,,主要包括:對于下行,網(wǎng)絡(luò)端將資源分配的相關(guān)信息通知被調(diào)度的終端,,終端根據(jù)DCI信息檢測物理下行共享信道PDSCH(Physical Downlink Shared Channel),;對于上行,網(wǎng)絡(luò)端通知終端發(fā)送物理上行共享信道PUSCH(Physical Uplink Shared Channel)使用的帶寬資源,、調(diào)制編碼方式、傳輸格式等上行調(diào)度授權(quán)命令,,然后終端才能在分配的物理資源上發(fā)送上行數(shù)據(jù),。可見,,DCI的正確檢測對上下行數(shù)據(jù)的傳輸起著非常重要的作用[1],。因此,合理地分配承載DCI的CCE資源以提高終端盲檢測的成功率是至關(guān)重要的。
    多個(gè)PDCCH可以復(fù)用在一個(gè)子幀中傳輸,。其中每個(gè)PDCCH包含n個(gè)連續(xù)的CCE,,并且開始位置的CCE應(yīng)滿足i mod n=0,i為CCE編號,每個(gè)CCE包含9個(gè)REG,每個(gè)REG包含4個(gè)RE,所以1個(gè)CCE包含36個(gè)RE,、72 bit信息的連續(xù)資源塊,。
    多個(gè)DCI經(jīng)過添加CRC、編碼,、速率匹配,、信道復(fù)用、加擾,、調(diào)制,、層映射、預(yù)編碼,、四元組交織,、循環(huán)移位后,映射到去除了PCFICH,、PHICH,,以及參考信號RS(Reference Signal)所占用的RE的控制區(qū)資源上。
    圖2給出了PCFICH,、PHICH,、PDCCH的資源映射過程。

   (2)得到PDCCH可能占有的OFDM符號數(shù),。當(dāng)子幀類型為TDD子幀1或6時(shí),,判斷下行帶寬是否大于10個(gè)RBs,如果是,,則再判斷高層配置的PHICH間期類型,。若為普通型,則PHICH占用第1個(gè)OFDM符號,,由表1得到承載PDCCH的OFDM符號數(shù)為1或2,。若為擴(kuò)展型,PHICH占用前2個(gè)OFDM符號,,那么承載PDCCH的OFDM符號數(shù)為2,。對于其他情況,PHICH映射到前3個(gè)OFDM符號上[4],。如果判斷得到的下行帶寬小于等于10個(gè)RBs,由表1得到承載PDCCH的OFDM符號數(shù)為2,。
  (3)通過嘗試確定PDCCH占用的OFDM符號數(shù)。首先假設(shè)OFDM符號數(shù)為1,,可得到所占REG個(gè)數(shù),,從而可知總的RE數(shù),。從總的RE數(shù)量中減去PCFICH、PHICH以及參考信號所占的RE數(shù)目[4],,即可得用于承載PDCCH映射的RE數(shù),,判斷是否大于36倍的nPDCCH(nPDCCH為發(fā)送的DCI個(gè)數(shù))。如果是,,則表明假設(shè)成立,,即PDCCH占用的OFDM符號數(shù)為1;否則,,OFDM符號數(shù)為2,。
    (4)聚合等級的確定。在承載PDCCH的RE中,,為每個(gè)PDCCH配置盡可能大的PDCCH格式(0,,1,2,,3),即選擇盡可能大的聚合等級,。
    同理可得到對于擴(kuò)展型PHICH間期、帶寬小于或等于10 RB及其他情況時(shí)的OFDM符號個(gè)數(shù)以及各PDCCH格式,。
  從上述方法描述中可以看出,,在確定PDCCH所占用的OFDM符號個(gè)數(shù)后,并沒有考慮信道環(huán)境質(zhì)量,,而是為用戶選擇最大的聚合等級,,導(dǎo)致不能兼顧小區(qū)容量、PDCCH解調(diào)性能以及資源分配的最優(yōu)化,,造成資源浪費(fèi)以及系統(tǒng)性能的下降,。
2 基于CQI自適應(yīng)反饋的CCE分配算法
    基于上述方法存在的問題,本文結(jié)合根據(jù)終端上報(bào)的信道質(zhì)量指示CQI所反應(yīng)的信道信噪比SNR的測量結(jié)果來確定當(dāng)前下行子幀發(fā)送的各個(gè)DCI格式的CCE聚合等級L,。具體的實(shí)現(xiàn)步驟(1)~(3)步與傳統(tǒng)方法一致,,在第(4)步聚合等級選擇時(shí)則是按照下述方式進(jìn)行合適的CCE數(shù)的選取來承載各種DCI格式。

 

 

    以UE專用搜索空間為例,,如果當(dāng)前網(wǎng)絡(luò)收到的CQI值在12~15范圍時(shí),,表示當(dāng)前的無線信道的質(zhì)量良好,為該UE所對應(yīng)的DCI格式分配一個(gè)CCE,即L=1就足夠了,。然而,,若當(dāng)前網(wǎng)絡(luò)收到的CQI值在0~3范圍,則表示當(dāng)前無線信道環(huán)境比較差,,為了充分實(shí)現(xiàn)數(shù)據(jù)傳輸?shù)慕研?,就要為該UE所對應(yīng)的DCI格式分配8個(gè)CCE[7],即L=8,。因此,,網(wǎng)絡(luò)端可以在L∈{1,2,4,8}內(nèi)選取合適的CCE數(shù)來承載PDCCH的各種DCI格式,以便PDCCH能適應(yīng)信道的變化,,滿足解調(diào)誤塊率(BLER)不超過1%的要求[3],,并使得資源得到充分、合理的利用,,提高UE盲檢測的成功率,。
3 仿真結(jié)果及性能分析
    依據(jù)上述算法原理,在MATLAB環(huán)境下搭建整個(gè)鏈路平臺,,對算法性能進(jìn)行仿真,,仿真過程為10個(gè)UE分配資源,假定每個(gè)UE只有1個(gè)DCI,。上下行子幀配置為1,,傳輸模式為1,信道為高斯白噪聲(AWGN)信道,,接收端通過盲檢測得到所需的DCI信息,。 具體仿真參數(shù)如表4所示。

    通過取不同的帶寬,,采用常規(guī)算法可得到4種聚合等級下所對應(yīng)的終端盲檢測成功率,。而本文算法,PDCCH格式的選取與信道條件有關(guān),,在仿真中表現(xiàn)為根據(jù)信噪比的變化而變化,。把兩種算法進(jìn)行仿真比較,每個(gè)信噪比情況下進(jìn)行10 000次的MATLAB仿真,,得到兩種算法下PDCCH盲檢測成功率的對比,,吞吐量對比以及CCE資源利用率的對比。仿真結(jié)果如圖3~圖5所示,。

    從圖3可以看出:(1)終端的盲檢測成功率隨著信噪比的變化和聚合等級的選擇在變化,; (2)當(dāng)信噪比一定時(shí),聚合等級選擇得越大,,即占用的CCE個(gè)數(shù)越多,,盲檢測成功率越大;(3)聚合等級一定時(shí),,信噪比越大,,即信道環(huán)境越好,盲檢測成功率越大,;(4)采用改進(jìn)后的方法,,在同等條件下,當(dāng)信道環(huán)境比較差時(shí),,可以達(dá)到與在采用傳統(tǒng)算法選擇聚合等級L=8時(shí)相當(dāng)?shù)某晒β?,隨著信道條件漸漸變好,,在同等條件下,成功率一直保持在高于L=4時(shí)的結(jié)果,,使成功率得到了提高,,而當(dāng)信道條件達(dá)到理想時(shí),成功率則略低于L=4,,而與L=2相當(dāng),,但此時(shí)成功率幾乎可以達(dá)到100%。因?yàn)樵诖藭r(shí)信道環(huán)境比較理想的情況下,,網(wǎng)絡(luò)端會自適應(yīng)地分配較小的聚合等級,,在保持成功率的前提下實(shí)現(xiàn)資源的合理分配利用。
    從圖4可以看出,基于常規(guī)算法的平均吞吐量低于基于CQI自適應(yīng)反饋算法的吞吐量,。圖4與圖3的理論分析是相關(guān)的,,盲檢測成功率越高,分配給數(shù)據(jù)信道的相關(guān)資源的可知性也就越大,,吞吐量也越有保證,;若盲檢測成功率低或盲檢測不成功,則無法解析數(shù)據(jù)信道,,相應(yīng)地,,吞吐量也就越低。
    由圖5可看出,,采用本文算法的CCE資源利用率要高于采用常規(guī)算法,。
    由仿真結(jié)果及分析可知,改進(jìn)后的方法綜合考慮了盲檢成功率,、吞吐量及CCE的資源利用率,。通過UE反饋的信道環(huán)境質(zhì)量,自適應(yīng)地選擇聚合等級,,從而使資源利用率,、UE覆蓋率以及PDCCH的解調(diào)性能得到了提高,系統(tǒng)性能得到了改善,。
    本文從理論分析出發(fā),,根據(jù)TD-LTE系統(tǒng)特性,分析了目前網(wǎng)絡(luò)端進(jìn)行CCE資源分配的算法,,提出了一種利用UE反饋的CQI信道質(zhì)量指示自適應(yīng)地進(jìn)行CCE聚合等級選擇的改進(jìn)方法,。從仿真結(jié)果可以看出本文算法使UE盲檢測成功率得到了提高、吞吐量增大,、資源分配更加合理,。另外,改進(jìn)方法的實(shí)現(xiàn)復(fù)雜度極低,,易于實(shí)現(xiàn),,已經(jīng)應(yīng)用于國家科技重大專項(xiàng)項(xiàng)目“TD-LTE無線終端綜合測試儀表”的開發(fā)中,,并驗(yàn)證了其可行性與有效性。
參考文獻(xiàn)
[1] 王映民,, 孫韶輝. TD-LTE技術(shù)原理與系統(tǒng)設(shè)計(jì)[M]. 北京:人民郵電出版社,2010.
[2] SESIA S, TOUFIK I, BAKER M. LTE-the UMTS long  term evolution from theory to practice[M]. A John Wiley and Sons, Ltd, Publication,2009:189-205.
[3] 3GPP TS 36.321 v9.0.0,3rd Generation partnership project; technical specification group radio access network; evolved universal terrestrial radio access(E-UTRA); multiplexing and channel coding(Release 9)[S].2009.
[4] 3GPP TS 36.211 v9.1.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 9)[S].2010-03.
[5] 3GPP TS 36.213 v9.0.0,3rd Generation partnership project.technical specification group radio access network. evolved universal terrestrial radio access(E-UTRA).Physical layer procedures(Release 9)[S].2009.
[6] Li Xiaowen, Fang Qianjun,Shi Liuwei. A effective SINR link to system mapping method for CQI feedback in TD-LTE System[C].2011 IEEE 2nd International Conference on Computing,Control and Industrial Engineering.Wuhan,China.2011.Beijing, China. Institute of Electrical and Electronics Engineers, Inc. August 20-21 2011. Vol.02.p208-211
[7] SESIA S, ISSAM T, BAKER M. LTE-The UMTS long term evolution from theory to practice[M]. [S.l.]; Wiley,2009:189-205.

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。