文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2014)04-0120-03
隨著近年來(lái)對(duì)石油需求量的不斷增大,,水平井技術(shù)和側(cè)轉(zhuǎn)井技術(shù)不斷發(fā)展,割縫篩管作為油井機(jī)械防砂完井最重要的工具之一,其加工方式和制造方法也多種多樣[1],。防砂是出砂油氣藏開采中不可缺少的環(huán)節(jié),。機(jī)械防砂是當(dāng)今油田最常用的一種油井防砂方法,目前全世界約有80%的出砂油氣井采用這種防砂方法,。而防砂篩管是機(jī)械防砂技術(shù)的核心部件之一,,對(duì)防砂的效果、成本和油井的產(chǎn)量等都有很大的影響,。目前在勝利油田機(jī)械防砂工藝中篩管防砂規(guī)模占93.4%,,其中燒絲與割縫篩管防砂工作量占88.9%。篩管縫寬度對(duì)石油的提取量影響很大,,傳統(tǒng)的縫隙檢測(cè)方法[2-3],,一般是由檢驗(yàn)人員憑經(jīng)驗(yàn)?zāi)繙y(cè)以后用塞尺抽檢篩管縫隙寬度,但這種方式在實(shí)際應(yīng)用中存在許多問(wèn)題,,無(wú)法保證精度,。因此,本文基于這些問(wèn)題,,與天津帥超激光工程技術(shù)有限公司合作,,研發(fā)出一套切縫自動(dòng)檢測(cè)系統(tǒng),,極大地提高了篩管的生產(chǎn)和檢測(cè)水平,。
1 系統(tǒng)簡(jiǎn)介
激光切縫機(jī)床的在線檢測(cè)示意圖如圖1所示。
割縫通過(guò)相機(jī)鏡頭成像到CCD上,,其實(shí)際寬度W和L分別對(duì)應(yīng)圖像中的像素寬度為h和d,,對(duì)相機(jī)進(jìn)行標(biāo)定(像素尺寸的標(biāo)定)之后,對(duì)應(yīng)關(guān)系為:W/h=L/d=N,其中N為像素的標(biāo)定值,,即每個(gè)像素對(duì)應(yīng)的實(shí)際尺寸,。根據(jù)如上關(guān)系式,可以通過(guò)視覺(jué)圖像處理得到割縫的實(shí)際寬度值,。測(cè)量原理如圖2所示,。
硬件系統(tǒng)包括1臺(tái)工業(yè)相機(jī)MTV-1881CB、1個(gè)PCI采集卡MV-600,、相機(jī)固定機(jī)械裝置,、PC和其他輔助設(shè)備。將相機(jī)通過(guò)一個(gè)機(jī)械固定結(jié)構(gòu)安裝在切頭主軸上方,,通過(guò)PCI采集卡與PC建立數(shù)據(jù)的傳輸,。工業(yè)相機(jī)采集圖像數(shù)據(jù),經(jīng)過(guò)采集卡傳輸?shù)絇C進(jìn)行圖像處理,,提取切縫的寬度特征,,主要步驟為:圖像預(yù)處理,即圖像濾波除噪聲;特征提取算法,,包括割縫的邊緣檢測(cè)和圖像像素尺寸的亞像素級(jí)標(biāo)定,;上位機(jī)軟件設(shè)計(jì),包括圖像的顯示,、存儲(chǔ)和相關(guān)計(jì)算等,。
2 割縫篩管的指標(biāo)
目前篩管的割縫布置形式有:平行縫、插花縫和螺旋縫,,工業(yè)上采用最多的是平行縫,。割縫篩管篩縫寬度選擇的原則是縫隙必須擋住充填的所有砂礫,而且縫型斷面多為矩形或者梯形,。外窄內(nèi)寬的梯形縫具有更強(qiáng)的自潔作用,,沙礫進(jìn)入縫腔之后很容易被油沖走,不易形成砂堵,,具有更好的防砂效果[4],。本文中檢測(cè)的篩管縫寬為0.45 mm,機(jī)床切割誤差為50 μm,。
3 圖像處理算法
3.1圖像的預(yù)處理以及邊緣檢測(cè)
由于相機(jī)拍攝或者數(shù)據(jù)傳輸?shù)仍?,最終獲取的圖像會(huì)包含各種各樣的噪聲及干擾,圖像濾波的本質(zhì)就是在保證圖像目標(biāo)特征區(qū)域完整保留的情況下,,對(duì)其他噪聲和污染進(jìn)行抑制,,其處理結(jié)果會(huì)直接影響后續(xù)特征提取過(guò)程的準(zhǔn)確性和可靠性[5-6]。常用的有平滑濾波,、高斯濾波及中值濾波等,。由于割縫邊緣特征具有一定寬度的灰度漸變區(qū)域,因此直接對(duì)割縫采集圖像進(jìn)行二值化會(huì)對(duì)邊緣提取的精度帶來(lái)很大誤差,。本文采用高斯濾波,,形態(tài)學(xué)腐蝕結(jié)合Sobel邊緣檢測(cè)以及Canny邊緣提取算法來(lái)提取割縫的寬度特征。圖3所示為采集到的篩管割縫的原始圖,。
由于相機(jī)的拍攝角度以及光照的反射問(wèn)題[7],,可以看出割縫的周圍有很多噪聲干擾。因此圖像處理算法實(shí)現(xiàn)步驟為:
(1) 為了凸顯出割縫寬度特征,,通過(guò)Sobel邊緣檢測(cè)對(duì)圖像進(jìn)行二值化處理,,得到比較清晰的割縫特征圖像,如圖4所示,。
(2)從圖4中可以看出割縫的邊緣有一定的灰度相似范圍,,若直接對(duì)圖像作二值化會(huì)對(duì)邊緣精確提取帶來(lái)很大誤差[8],所以針對(duì)Sobel處理后圖像進(jìn)行濾波腐蝕處理,,提取出割縫邊緣的兩條精確位置,,如圖5所示,。
(3)通過(guò)高斯濾波以及腐蝕算法對(duì)特征圖像中的噪聲進(jìn)行去噪處理??梢钥闯龈羁p的整體邊界輪廓比較明顯,,但是目標(biāo)特征周圍有很多干擾噪聲,經(jīng)過(guò)濾波腐蝕處理之后效果如圖6所示,??梢钥闯龈羁p的邊緣特征被精確地提取,圖中兩條直線就是割縫的兩個(gè)邊界的位置。
(4) 從上一步處理的圖像可以看出邊緣雖然提取出來(lái)但是其特征不明顯,,因此需再對(duì)其進(jìn)行Canny邊緣提取算法來(lái)獲得邊緣信息,,如圖7所示。采用Canny邊緣算法能有效地抑制噪聲,,并精確確定邊緣的位置,,再對(duì)信噪比與定位乘積進(jìn)行測(cè)度,得到最優(yōu)化逼近算子,。實(shí)現(xiàn)步驟為:①用高斯濾波器平滑圖象,;②用一階偏導(dǎo)的有限差分來(lái)計(jì)算梯度的幅值和方向;③對(duì)梯度幅值進(jìn)行非極大值抑制,;④用雙閾值算法檢測(cè)和連接邊緣,。
(5) 對(duì)Canny提取的邊緣圖像進(jìn)行直線擬合,可以看出,雖然邊緣特征被精確提取,但是特征不連續(xù)。由此采用動(dòng)態(tài)閾值法來(lái)分別獲取兩條邊緣上的點(diǎn)集,,進(jìn)而擬合出兩條邊緣的所在直線,,如圖8所示。通過(guò)計(jì)算兩條直線之間的距離得到割縫的像素寬度值,。
3.2 圖像像素尺寸的亞像素級(jí)標(biāo)定
本文分別計(jì)算出割縫寬度的像素寬度和圖像像素尺寸,,然后相乘得到割縫寬度,。由于在邊緣檢測(cè)提取出的割縫像素寬度較為確定,,因此要想提高檢測(cè)的精確度,需提高圖像像素尺寸的標(biāo)定精度,。采取亞像素級(jí)的像素標(biāo)定方法,,該方法使用標(biāo)志圓來(lái)實(shí)現(xiàn)。首先用灰度重心法初步確定標(biāo)定圓的圓心和半徑,;其次基于初步確定的圓心和半徑,,用圓邊緣檢測(cè)法在提取的待測(cè)圓邊緣上以60°角間隔,以確定6組待測(cè)圓邊緣點(diǎn)坐標(biāo),;最后基于待測(cè)圓的邊緣點(diǎn),,利用最小二乘法擬合圓邊緣,求圓心的位置和半徑,,算法的理論精度可達(dá)0.01像素,。通過(guò)這種亞像素級(jí)尺寸標(biāo)定得到圓半徑像素個(gè)數(shù),結(jié)合標(biāo)定圓的實(shí)際尺寸,計(jì)算出圖像中每個(gè)像素的實(shí)際尺寸,。
4 實(shí)驗(yàn)數(shù)據(jù)以及分析
提取出的割縫像素寬度數(shù)據(jù)如表1所示,。可以看出針對(duì)圖像邊緣檢測(cè)的像素寬度提取較為精確,,每次測(cè)量的個(gè)數(shù)誤差不超過(guò)一個(gè)像素大小,,平均割縫寬度為12.75像素。亞像素級(jí)像素尺寸的標(biāo)定數(shù)據(jù)如表2所示,。 由6個(gè)標(biāo)定點(diǎn)坐標(biāo)擬合得到圓的半徑為132.62像素,由此可以計(jì)算出每個(gè)像素對(duì)應(yīng)的實(shí)際尺寸為37.7 μm,。
結(jié)合以上數(shù)據(jù)可以得到割縫的測(cè)量寬度為0.467 mm,參考理論割縫寬度0.45 mm,,絕對(duì)誤差為17μm,,具有較高的精度。
石油篩管的割縫寬度在線自動(dòng)檢測(cè)系統(tǒng)具有廣闊的應(yīng)用前景,,可以有效地減少生產(chǎn)工人的工作量,,提高產(chǎn)品判定的精確度,極大地優(yōu)化生產(chǎn)效率,。
系統(tǒng)具有安裝方便,、穩(wěn)定性好以及數(shù)據(jù)可靠的優(yōu)點(diǎn)。應(yīng)用本系統(tǒng)實(shí)現(xiàn)針對(duì)篩管割縫的在線自動(dòng)檢測(cè),,提高了工業(yè)中的加工效率和加工精度,。
采用邊緣檢測(cè)結(jié)合圖像亞像素級(jí)像素尺寸標(biāo)定的方法進(jìn)行檢測(cè),能夠?qū)崿F(xiàn)較高的精度,,適用于工業(yè)及其他在線尺寸檢測(cè)的領(lǐng)域,。
參考文獻(xiàn)
[1] 劉大紅, 宋秀英,, 劉艷紅,,等. 割縫篩管防砂設(shè)計(jì)及應(yīng)用[J].石油機(jī)械,2004,32(8):13-16.
[2] 匡韶華,,石磊,,于麗紅,等.防砂篩管測(cè)試技術(shù)現(xiàn)狀及發(fā)展探討[J].新疆石油科技,,2012,22(4):18-21.
[3] 韓俊偉,,余杰.防砂篩管過(guò)濾精度對(duì)油井產(chǎn)能影響規(guī)律研究[J].新疆石油天然氣,2009,5(1):66-71.
[4] 韓雪峰,胡鵬浩,,趙乾琚,等.繞絲篩管縫寬快速測(cè)量技術(shù)研究[J].工具技術(shù),,2012,46(10):80-83.
[5] 劉杰平,余英林.一種簡(jiǎn)易的圖像去噪方法[J].華南理工大學(xué)學(xué)報(bào),,2000,28(2):60-63.
[6] SINGHAL N J.SPTA: a proposed algorithm for thinning binary patterns[J]. IEEE Trans.Syst.ManCybennet.SMC.1984,,14(3):5-6.
[7] 浦昭邦,,屈玉福,王亞愛(ài).視覺(jué)檢測(cè)系統(tǒng)中照明光源的研究[J].儀器儀表學(xué)報(bào),,2003,24(4)增刊:438-439.
[8] 汪季英,,陳賢富.基于色彩與形狀信息特征的圖像檢索算法研究[J].微型機(jī)與應(yīng)用,2012,31(7):32-34.