概述
在很多發(fā)射應(yīng)用中必須產(chǎn)生多路相對相位準(zhǔn)確已知的模擬輸出。在正交調(diào)制器中(圖1),,I和Q通道必須具有明確的相位關(guān)系來實(shí)現(xiàn)鏡頻抑制,。圖1中,DAC1和DAC2的延遲必須匹配,。使用數(shù)字波束成形技術(shù)的發(fā)射器需要準(zhǔn)確地控制大量DAC之間的相對相位,。
復(fù)用DAC的I/Q發(fā)射器中的DAC和第一上變頻級" border="0" height="169" hspace="0" src="http://files.chinaaet.com/images/20100811/5f2070aa-3871-4296-9392-29abbfc47004.jpg" width="430" />
圖1. 使用多路復(fù)用DAC的I/Q發(fā)射器中的DAC和第一上變頻級
使用具有多路輸入的DAC (MUX-DAC)如MAX19692,或具有數(shù)據(jù)時鐘輸出的內(nèi)插DAC時,,輸入數(shù)據(jù)速率為DAC刷新速率的1/N,DAC在一個或兩個數(shù)據(jù)時鐘跳變沿鎖存數(shù)據(jù)。MAX19692中N = 4,,輸入數(shù)據(jù)速率為DAC刷新速率的1/4,。DAC輸出一個由輸入時鐘經(jīng)數(shù)字分頻得到的數(shù)據(jù)時鐘(DATACLK)。DAC上電時,,數(shù)字時鐘分頻器可在N個狀態(tài)的任意一個啟動,。如果使用多個DAC,不同DAC的時鐘分頻器會在不同的狀態(tài)啟動,,所以DAC會在不同的時間鎖存數(shù)據(jù),。除非這種情況被發(fā)現(xiàn)并校正,否則不同的DAC輸出數(shù)據(jù)時相互之間可能會有一個或更多個時鐘周期的延遲,。如果每個DAC的時鐘分頻器可以復(fù)位,,那么這種情況可以避免,但是仍然會存在一些問題,。如果其中一個時鐘分
頻器發(fā)生錯誤,,DAC會變得永久異相,除非執(zhí)行一些錯誤狀態(tài)檢測方法,。為了保證系統(tǒng)的可靠性,,必須檢測相位錯誤狀態(tài)并改正。如果DAC工作于非常高速的狀態(tài)下,,那么復(fù)位信號與輸入時鐘的同步也可能是個難題,。
圖2所示是MAX19692的時鐘(CLKP,CLKN)和數(shù)據(jù)時鐘(DATACLKP,,DATACLKN)接口的簡化框圖,。初始時鐘由一個兩位計數(shù)器四分頻后用于鎖存數(shù)字DAC輸入。該計數(shù)器可能在四個狀態(tài)中的任意一個啟動(圖3),。如果使用兩個多路復(fù)用DAC,,這兩個DAC可能會在不同的狀態(tài)啟動。這可能導(dǎo)致DAC1的鎖存與DAC2的鎖存之間存在-1,、0,、1或2個時鐘周期的延遲。
MAX19692的數(shù)據(jù)時鐘輸出再由數(shù)據(jù)輸入鎖存時鐘進(jìn)行2分頻或4分頻,。然后數(shù)據(jù)在雙倍數(shù)據(jù)率(DDR)模式下在時鐘的兩個跳變沿進(jìn)行鎖存,,或者在四倍數(shù)據(jù)率(QDR)模式下在時鐘的每90°相位處進(jìn)行鎖存。如果多個DAC的數(shù)據(jù)時鐘延遲相匹配,,或數(shù)據(jù)時鐘相互之間反相,,那么鎖存時鐘相匹配。
圖2. MAX19692內(nèi)部時鐘接口框圖
圖3. MAX19692鎖存時鐘(四種可能的狀態(tài))
DAC的同步問題有兩個方面:
DAC的鎖存時鐘之間的相對相位必須被檢測,。
DAC之間的相對相位必須被調(diào)整直到DAC被合適地定相,。
檢測DAC之間的相位誤差可以通過檢測兩個DAC之間的數(shù)據(jù)時鐘輸出的相位誤差來實(shí)現(xiàn),。相位檢測器可以像一個異或門一樣簡單,也可以像相頻檢測器一樣復(fù)雜,。
可以通過操作一個或更多個DAC的時鐘來實(shí)現(xiàn)兩個DAC之間的相位調(diào)整,,直到DAC數(shù)據(jù)時鐘輸出的相對相位為零。另外一種方法可以測量數(shù)據(jù)時鐘之間的DAC延遲周期數(shù)和相應(yīng)的延遲數(shù)據(jù),。下面的段落講述了I/Q配置中的這兩種方法,。
通過“吞”脈沖實(shí)現(xiàn)DAC相位調(diào)整
如果DAC使用方波(比如ECL)時鐘,兩個DAC之間的同步可以用圖4所示的簡單的高速邏輯電路來實(shí)現(xiàn),。為了簡單明了,,該原理圖中的邏輯配置只能實(shí)現(xiàn)單端功能。但是實(shí)際應(yīng)用中會使用差分邏輯如ECL來實(shí)現(xiàn)高速和低噪聲性能,。
圖4. 實(shí)現(xiàn)DAC同步的簡單的高速邏輯電路
MUX-DAC1時鐘路徑上與門(G1)的插入允許對MUX-DAC1的時鐘進(jìn)行操作,。MUX-DAC2的時鐘路徑上插入與門(G2)用于延遲匹配。異或門(G3)起相位檢測的作用,。當(dāng)DATACLK1和DATACLK2的輸出不同時G3輸出“1”,。如果G3out = “1”,應(yīng)該 “吞掉”MUX-DAC1的時鐘脈沖,,將DATACLK1的邊沿移位一個CLK時鐘周期,。G3輸出的上升沿(G3out)由FF1和G4組成的上升沿檢測器(PED)來檢測。如果檢測到上升沿,,PED輸出“0”,,持續(xù)一個時鐘周期。在SPB應(yīng)用于G1之前,,F(xiàn)F2將這個信號重新定時,,從而使MUX-DAC1的一個時鐘脈沖被抑制。這就使DATACLK1延遲一個CLK時鐘周期,。經(jīng)過若干個時鐘周期后,,DATACLK1的延遲與DATACLK2一致,如圖5所示,。使用這種方法時,,觸發(fā)器要在時鐘的下降沿進(jìn)行狀態(tài)更新,以消除DAC時鐘信號的毛刺,,兩個MUX-DAC的輸入時序要相同,。布線時要考慮延遲以確保滿足兩個觸發(fā)器的建立和保持時間的要求,且在時鐘為低時將SPB信號的脈沖應(yīng)用于G1,。否則,,時鐘信號可能會產(chǎn)生毛刺。同時建議使用無噪聲電源為時鐘同步電路供電,,將抖動的引入減到最小,。
圖5. 所示邏輯電路操作的時序圖
通過輸入數(shù)據(jù)移位實(shí)現(xiàn)DAC相位調(diào)整
可以利用Xilinx FPGA中先進(jìn)的數(shù)字時鐘管理程序(DCM)來檢測兩個MUX-DAC的數(shù)據(jù)時鐘之間的相位差異(圖6),。DCM1生成一個與DATACLK1和DATACLK2相同頻率的時鐘。以時鐘周期的1/256為間距對DCLK1的延遲進(jìn)行動態(tài)調(diào)整,。觸發(fā)器DFF1和DFF2在每個時鐘周期對DATACLK1和DATACLK2進(jìn)行一次采樣,。如果DFF1在DATACLK1為低時采樣 DATACLK1,DFF1會輸出固定的“0”,。如果DFF1在DATACLK1為高時采樣DATACLK1,DFF1會輸出固定的“1”,。所以DFF3和DFF4可在任意時鐘相位定時,,與DCLK1的延遲設(shè)置無關(guān)。通過將DCLK1的延遲進(jìn)行分級,,使用DCM1的動態(tài)延遲調(diào)整功能以及讀取DFF3和DFF4的輸出,,我們可以得到基于DATACLK1和DATACLK2上升沿的延遲設(shè)置。根據(jù)延遲設(shè)置,,我們可以計算出為了保持MUX-DAC1和MUX-DAC2輸入數(shù)據(jù)的同相,,MUX-DAC1的輸入數(shù)據(jù)需要延遲的DAC時鐘周期數(shù)。FPGA中4 x 4桶形移位器的實(shí)現(xiàn)可使數(shù)據(jù)等待時間以一個DAC時鐘周期為增量進(jìn)行改變(參見圖6),。
MAX19692有四個并行數(shù)據(jù)端口A,、B、C和D,。輸入DAC的數(shù)據(jù)序列是
An,、Bn、 Cn,、Dn,、An+1、Bn+1,、Cn+1,、Dn+1、An+2等,。12位4 x 4柱形移位器(圖6)允許輸入MUX-DAC1的數(shù)據(jù)延遲-1,、0、1或2個CLK周期,。因此可以進(jìn)行數(shù)據(jù)等待時間的調(diào)整直到兩個DAC的輸出數(shù)據(jù)同相,。這樣的話,兩個DAC的數(shù)據(jù)時鐘可能相距幾個整數(shù)時鐘(CLK)周期且不再改變,。由于DAC的建立和保持時間以數(shù)據(jù)時鐘為基準(zhǔn),,所以兩個DAC的數(shù)據(jù)時序必須不同??梢酝ㄟ^驅(qū)動DAC的FPGA中的多個DCM來實(shí)現(xiàn),。
圖6. 利用FPGA中桶形移位器的實(shí)現(xiàn)完成MUX-DAC的同步
每個DAC使用一個PLL實(shí)現(xiàn)DAC同步
如果DAC使用鎖相環(huán)(PLL)合成器來定時,,那么同步兩個DAC的方法就是每個DAC使用單獨(dú)的PLL (圖7)。DAC1和DAC2的LVDS數(shù)據(jù)時鐘輸出相位與參考時鐘相比較,。這樣的話,,DAC的內(nèi)部時鐘分頻器在時鐘生成PLL中作為反饋分頻器使用。
圖7. 每個DAC使用一個PLL實(shí)現(xiàn)MUX-DAC同步
這種方法中,,兩個DAC的建立和保持時間相匹配,。但是這種方法有兩個缺點(diǎn),兩個PLL會帶來額外的成本且PLL的相位噪聲極限可能會造成性能極限,。
結(jié)論
MAX19692為2.3Gsps,、12位、可工作于多個奈奎斯特頻帶內(nèi)的DAC,,具有集成的4:1輸入數(shù)據(jù)多路復(fù)用器,,是I/Q應(yīng)用中的理想器件。當(dāng)I/Q應(yīng)用中MAX19692的使用被強(qiáng)調(diào)時,,所討論的方案同樣適用于其它DAC和應(yīng)用,,比如在多于兩個通道應(yīng)用中使用的MAX5858A。本文所推薦的方案適用于任意數(shù)量的DAC,。為了對高速器件進(jìn)行正確的同步,,還必須考慮與電路板引線相關(guān)的延遲。