CMOS RRO:輸出引腳補(bǔ)償
我們的 CMOS RRO 輸出引腳補(bǔ)償實(shí)例如圖 9.20 所示,。這種實(shí)際電源應(yīng)用采用 OPA569 功率運(yùn)算放大器作為可編程電源,。為了在負(fù)載上提供精確的電源電壓,可以采用一種差動(dòng)放大器 INA152 對(duì)負(fù)載電壓實(shí)施差動(dòng)監(jiān)控,。閉環(huán)系統(tǒng)可以補(bǔ)償任何從可編程電源到負(fù)載的正/負(fù)連接中的線路壓降造成的損耗,。OPA569 上的電流限值設(shè)定為2A,。在我們的實(shí)際應(yīng)用中,這種電源具有靈活的配置,,因此可以在差動(dòng)放大器 INA152 的輸出上提供多大達(dá)10nF 電容,。這樣是否能夠?qū)崿F(xiàn)可編程電源的穩(wěn)定運(yùn)行?
圖 9.20:可編程電源應(yīng)用
我們?cè)趫D 9.21 中詳細(xì)說(shuō)明了在我們的可編程電源應(yīng)用中使用的 IC 的主要規(guī)格,。
圖9.21:可編程電源 IC 主要規(guī)格
我們用于反饋的 INA152 差動(dòng)放大器采用如圖 9.22 所示的 CMOS RRO 拓?fù)洹?/p>
圖9.22:INA152 差動(dòng)放大器:CMOS RRO
我們采用圖 9.23 中的 TINA Spice 電路檢查可編程電源的穩(wěn)定性,。我們的 DC 輸出由 Vadjust 設(shè)定到3.3V,同時(shí)應(yīng)用一個(gè)較小的瞬態(tài)方形波檢查過(guò)沖與振鈴,。
圖9.23:瞬態(tài)穩(wěn)定性測(cè)試:原始電路
圖 9.24 中的瞬態(tài)穩(wěn)定性測(cè)試結(jié)果顯然不夠理想,。我們不希望在未經(jīng)進(jìn)一步穩(wěn)定性補(bǔ)償情況下投產(chǎn)這種電路。
圖9.24:瞬態(tài)穩(wěn)定性圖:原始電路
圖 9.25 中的 TINA Spice 電路用于檢查原始電路中的不穩(wěn)定性是否由 INA152 輸出端的 CX負(fù)載所引起,。我們將采用瞬態(tài)穩(wěn)定性測(cè)試進(jìn)行快速檢測(cè),。
圖9.25:差動(dòng)放大器反饋:原始電路
圖9.26可以證明我們的推測(cè),即:是CX造成了差動(dòng)放大器INA152的不穩(wěn)定性,。
圖9.26:瞬態(tài)圖:差動(dòng)放大器反饋,,原始電路
差動(dòng)放大器由 1 個(gè)運(yùn)算放大器以及 4 個(gè)精密比率匹配電阻器構(gòu)成。這給我們的分析工作帶來(lái)了挑戰(zhàn),,因?yàn)槲覀儫o(wú)法直接接入內(nèi)部運(yùn)算放大器的 - 輸入或 + 輸入,。在圖 9.27 中我們可以看到差動(dòng)放大器的等效示意圖,同時(shí)可以看出測(cè)量 Aol 的明確方法,。我們將采用 LT 斷開(kāi)任何相關(guān) AC 頻率的反饋,,同時(shí)仍然保持準(zhǔn)確的 DC 工作點(diǎn)(LT 對(duì)于相關(guān) DC 頻率短路,對(duì)于相關(guān) AC 頻率開(kāi)路),。通過(guò)把 INA152 的 Ref 引腳連接到 VIN+ 引腳,,我們可以創(chuàng)建一個(gè)非反相輸入放大器。通過(guò)在 Sense 與 VOA 之間放置 LT,,我們可以理想地在任何相關(guān)AC頻率驅(qū)動(dòng)運(yùn)算放大器進(jìn)入開(kāi)路狀態(tài),。INA152 運(yùn)算放大器的內(nèi)部節(jié)點(diǎn) VM 可以在相關(guān) AC 頻率達(dá)到零點(diǎn)。VP 只需作為 VG1,,然后我們可以輕松測(cè)出 Aol = VOA/VG1,。請(qǐng)注意:我們只要把 VdcBias 設(shè)定為 1.25V 以便在 VOA 產(chǎn)生 2.5V DC,即可衡量 DC 工作點(diǎn),。
我們把圖 9.27 的 INA152 Aol 測(cè)試電路概念轉(zhuǎn)化成圖 9.28 所示的 TINA Spice 電路,。我們知道,用于 INA152 的 TINA Spice 宏模型是一種 Bill Sands 宏模型[參考:《模擬與 RF 模型》,,(http://www.home.earthlink.net/%7Ewksands/)],,因此該宏模型可以精確匹配實(shí)際硅片。
圖9.27:INA152 Aol 測(cè)試電路概念
圖9.28:TINA Spice INA152 Aol 測(cè)試電路
圖 9.29 說(shuō)明了根據(jù) TINA Spice 仿真獲得的 INA 152 詳細(xì) Aol 曲線,。請(qǐng)注意:Aol 曲線中在 1MHz 時(shí)存在第二個(gè)極點(diǎn),,在基于 Aol 相位曲線的頻率之外存在某些更高階的極點(diǎn),其在 1MHz 之外表現(xiàn)出比每十倍頻程 -45度更陡的斜率,。
圖 9.29:INA152 Aol TINA Spice 結(jié)果
由于我們已知道 INA152 是一款 CMOS RRO 差動(dòng)放大器,,因此,除了 Aol 曲線,,還需要 Zo 進(jìn)行穩(wěn)定性分析,。在圖 9.30 中建立一個(gè) Zo 測(cè)試電路概念。與圖 9.28 的 Aol 測(cè)試電路相似,,我們可以利用所示的 LT 與電路連接強(qiáng)迫 INA152 的內(nèi)部運(yùn)算放大器在任何相關(guān) AC 頻率進(jìn)入開(kāi)路狀態(tài),。我們現(xiàn)在將采用設(shè)為 1Apk 的 AC 電流電源驅(qū)動(dòng)輸出,同時(shí)直接根據(jù) VOA 的電壓測(cè)量 Zo,。
圖 9.30:INA152 Zo 測(cè)試電路概念
我們?cè)趫D 9.31 中建立了 TINA Spice INA152 Zo 測(cè)試電路,。快速 DC 分析表明我們可以得到 INA152 的正確 DC 工作點(diǎn),。最好在利用 Spice 進(jìn)行 AC 分析之前先執(zhí)行 DC 分析,,以便確定電路在任何電源軌下都不飽和,電源軌可能會(huì)造成錯(cuò)誤AC分析結(jié)果,。
圖 9.31:INA152 Zo TINA 測(cè)試電路
圖 9.32:INA152 TINA Zo 曲線
圖 9.32 的 TINA Zo 測(cè)試結(jié)果顯示了 Zo 的典型 CMOS RRO 響應(yīng),。我們可以看到在 fz="76".17Hz 時(shí)出現(xiàn)一個(gè)零點(diǎn),在 fp="4".05Hz 時(shí)出現(xiàn)一個(gè)極點(diǎn),。
圖 9.33:INA152 Tina Ro 測(cè)量
我們?cè)趫D 9.33 中根據(jù)由 TINA Spice 創(chuàng)建的 Zo 曲線測(cè)量 Ro,。Ro = 1.45k 歐姆。
我們從測(cè)量的 Zo 圖可以獲得 Ro,、fz 以及 fp,。我們利用這些資料可以創(chuàng)建 INA152 的等效 Zo 模型,如圖 9.34 所示,。
圖 9.34:INA152 Zo 模型
我們可以利用 TINA Spice 仿真器快速檢測(cè)等效 Zo 模型與實(shí)際 INA152 Zo 相比的準(zhǔn)確性,。等效 Zo 模型結(jié)果如圖 9.36 所示,并與圖9.35 作了相關(guān)對(duì)比,。由此可見(jiàn),,等效 Zo 模型非常接近,因此可以繼續(xù)進(jìn)行穩(wěn)定性分析,。
圖 9.35:Zo 等效模型與 INA152 Zo 對(duì)比
圖 9.36:TINA 圖:INA152 等效 Zo 模型
現(xiàn)在我們可利用 Zo 等效模型分析負(fù)載電容 CL 對(duì) INA152 輸出的影響,。從 Aol 曲線中,我們可以看到在CL=10.98kHz 時(shí)造成的附加極點(diǎn)(如圖 9.37 所示),。
圖 9.37:計(jì)算 Zo 與 CL 造成的極點(diǎn)(fp2)