范國娟1,,范國卿2,柳絮青3
?。?.山東傳媒職業(yè)學(xué)院,,山東 濟南 250200;2.絲路衛(wèi)星通信有限公司,,江蘇 南京 210012,;3.江南大學(xué),江蘇 無錫 214122)
摘要:針對實際監(jiān)控中人體目標(biāo)輪廓的多尺度特性,,提出一種用于人體目標(biāo)檢測的多尺度方向特征描述子(HOGG),。首先采用Gabor濾波器提取人體圖像對應(yīng)不同尺度,、不同方向的多個Gabor幅值域圖譜,然后將相同尺度不同方向的幅值域圖譜融合以降低特征維數(shù),,并對每幅融合圖像提取梯度方向直方圖(HOG)特征,,最后將這些HOG特征聯(lián)合起來作為人體圖像表征。利用支持向量機(SVM)對描述特征進行分類,,在CAVIAR數(shù)據(jù)庫中進行了實驗,,結(jié)果表明,該算法對人體目標(biāo)檢測具有較好的性能,。
關(guān)鍵詞:人體檢測,;Gabor變換;分塊直方圖,;多尺度
0引言
人體檢測被廣泛地用于計算機視覺領(lǐng)域,如公共安全,、智能機器人,、視覺監(jiān)控、行為分析等[1],。目前人體檢測多采用基于統(tǒng)計分類的方法,,常用Gabor小波變換和Haar小波變換提取人體特征。DALAL N[2]等人提出梯度直方圖(Histograms of Oriented Gradient,,HOG),,利用圖像塊內(nèi)的方向統(tǒng)計進行人體檢測,對解決局部形變與視角變化等問題,,該檢測算法具有較高的精度,。Mu Yadong[3]等人將局部二值模式(Local Binary Patterns,LBP)作為人體特征描述算子,,具有旋轉(zhuǎn)不變性和光照不變性,,是一種有效的描述特征。Wang Xiaoyu[4]等人提出了HOG與LBP相結(jié)合的算法,,達(dá)到兩種特征互補的效果,,對解決人體檢測中部分遮擋問題有顯著的提高。
上述輪廓特征一般都是在固定尺度上計算,,沒有考慮實際監(jiān)控中復(fù)雜背景下人體目標(biāo)輪廓的多尺度特性,,當(dāng)這些算法應(yīng)用到真實場景中時,其性能會急劇下降,。本文提出一種Gabor變換與HOG特征相結(jié)合的人體檢測算法(簡稱HOGG),,利用Gabor變換多方向多尺度的特性,增強了人體的輪廓信息,。該方法首先對圖像進行規(guī)一化處理,,然后使用Gabor濾波器提取圖像多尺度、多方向的幅值域圖譜,并將同尺度不同方向幅值域圖譜融合以降低特征維數(shù),,最后按順序提取各個尺度上融合圖譜的HOG特征,,串接組成整幅圖像的描述特征。在CAVIAR數(shù)據(jù)庫下的大量實驗表明,,該方法能較好地提取人體描述特征,,有較高的檢測率。
1Gabor特征提取
在提取人體Gabor特征之前需要對圖像進行規(guī)一化處理,,本文實驗中所用人體圖像為灰度圖像,,大小為32×64像素。為了獲取多尺度的Gabor特征,,選取5個尺度和8個方向的Gabor濾波器組,,則一幅人體圖像的多尺度、多方向特征表示為:
通過Gabor變換后,,每幅圖像會轉(zhuǎn)化成40個不同尺度與方向的圖像,,特征維數(shù)為原圖像的40倍,造成特征數(shù)據(jù)冗余,,增加了計算的復(fù)雜度,。本文將Gabor特征同一尺度不同方向的特征進行融合,有效地降低了Gabor特征間的數(shù)據(jù)冗余,,保持了有效的決策信息,,并可以對人體圖像進行多尺度分析。
2HOGG描述子
本文對融合圖像進一步提取HOG特征,,并將其聯(lián)合起來作為人體圖像的HOGG表征,。HOGG的構(gòu)建過程主要分為以下幾個步驟:
(1)計算梯度幅值和方向
利用一階模板算子(-1,0,1)分別從橫向和縱向?qū)θ诤蠄D像進行梯度提取操作,求得融合圖像的梯度圖像,。
(2)構(gòu)建梯度方向直方圖
把梯度圖像分成同等大小的正方形小塊(block),,這些小塊是相互重疊的并且每個小塊被分為更小的正方形單元(cell,n×n像素),。利用梯度幅值和梯度方向在每個單元中進行直方圖投票,,其中梯度方向作為直方圖投票區(qū)間,而梯度幅值作為直方圖投票權(quán)重,,這樣對于每個小塊(block)都能得到一個維度為m×m×b的直方圖向量,。
(3)梯度強度歸一化
以block為單位進行L2norm標(biāo)準(zhǔn)化,減少局部光照以及前景,、背景對比度的變化對直方圖特征的影響,。設(shè)vn是對應(yīng)的block向量,則標(biāo)準(zhǔn)化的向量fn為:
其中:ξ為接近0的正數(shù),。
(4)形成特征向量
把一幅融合圖像的所有塊中的HOG特征連接起來就得到了該融合圖像的HOG特征,。再將各尺度融合圖像的HOG順接起來作為一幅人體圖像的HOGG描述子,。
3實驗分析
3.1實驗環(huán)境與數(shù)據(jù)庫
在Core(TM)2.00 GHz的CPU,2.00 GB內(nèi)存,,Windows下MATLAB R2010a的計算機上進行仿真實驗,。實驗采用MIT和INRIA數(shù)據(jù)庫作為訓(xùn)練集,包括1 126個正樣本與1 218個負(fù)樣本,;采用CAVIAR[5]數(shù)據(jù)庫作為測試集,。
3.2實驗步驟
本文采用滑動窗口方式獲取檢測窗口,用HOGG描述子對檢測窗口進行描述,,再利用支持向量機[6]進行判別,。由于在檢測過程中,對同一個人體進行多重檢測會直接導(dǎo)致計算效率下降,。為此,,本文將檢測窗口從大到小進行遍歷。在遍歷過程中,,如果待測區(qū)域已經(jīng)被標(biāo)記為人體,,則跳過該區(qū)域。
3.3實驗結(jié)果與分析
Gabor能對圖像進行多尺度,、多方向的分解,實驗首先研究不同尺度數(shù)對檢測算法的影響,。從CAVIAR四個序列中各隨機選取200張圖片作為測試集,。實驗結(jié)果如表1所示。
實驗中采用綜合評價指標(biāo)(F1measure,,F(xiàn))[7]評估算法的性能,,其中:precision為準(zhǔn)確率,recall為查全率,;tp表示被正確檢測人數(shù),,fp表示錯誤檢測的人數(shù),fn表示漏檢的人數(shù),。
由于不同尺度子帶間冗余信息較大,,簡單地增加尺度數(shù)不一定能提高性能,由表1可以看出,,取尺度數(shù)為4效果最佳,。
為了進一步驗證本文提出的算法,選取Gabor尺度為4,,在CAVIAR行人數(shù)據(jù)庫上提取HOGG特征,,參照文獻[4]與HOG、LBP+HOG算法做了對比實驗,,如表2所示,。
從圖1可以看出,,本文算法的Fmeasure優(yōu)于當(dāng)前其他方法,具有較好的性能,,證明了HOGG方法的有效性,。
4結(jié)論
本文提出了一種基于Gabor變換和HOG的人體目標(biāo)檢測的新特征表達(dá),可以多層次,、多分辨率地表征人體目標(biāo),。在CAVIAR數(shù)據(jù)庫中的實驗數(shù)據(jù)表明,Gabor多尺度的變換能夠增強HOG算子對人體紋理細(xì)節(jié)特征和全局特征的表示能力,,有效地提高了人體檢測的性能,。
參考文獻
[1] HARITAOGLU I,,HARWOOD D,,DAVIS L S. W4:realtime surveillance of people and their activities [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,(S01628828),,2000,,22(8) : 809-830.
[2] DALAL N,, TRIGGS B. Histograms of oriented gradients for human detection [C]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,,CVPR IEEE 2005:886-893.
[3] Mu Yadong,,Yan Shuicheng,, Liu Yi,et al. Discriminative local binary patterns for human detection in personal album [C]. Computer Vision and Pattern Recognition,,Anchorage,,AK,2008:1-8.
?。?] Wang Xiaoyu,,HAN T X,Yan Shuicheng. An HOGLBP human detector with partial occlusion handling [C]. Computer Vision, Kyoto,,2009:32-39.
?。?] CAVIAR. Benchmark Data [EB/OL].[2016-07-01]. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
[6] KIM S K,,PARK Y J,,TOH K A, et al. SVM based feature extraction for face recognition [J]. Pattern Recognition,2010,,43(8): 2871-2881.
?。?] bluepoint2009. 準(zhǔn)確率(Precision)、召回率(Recall)以及綜合評價指標(biāo)(F1 Measure)[EB/OL].(2012-09-18)[2015-06-21].http://www.cnblogs.com/bluepoint2009/archive/2012/09/18/precisionrecallf_measures.html.