激光雷達作為眾多智能設備的核心傳感器,,其應用已經非常廣泛,。如今我們能夠在無人駕駛小車、服務機器人,、AGV叉車,、智能路政交通以及自動化生產線上頻頻看到激光雷達的身影,,也足以說明它在人工智能產業(yè)鏈上不可或缺的地位,。
就目前市面上的主流激光雷達產品而言,,用于環(huán)境探測和地圖構建的雷達,按技術路線大體可以分為兩類,,一類是TOF(Time of Flight,,時間飛行法)雷達,,另一類是三角測距法雷達。這兩個名詞相信很多人并不陌生,,但是要說這兩種方案從原理、性能到成本,、應用上到底孰優(yōu)孰劣,,以及背后的原因是什么,也許每個人都還或多或少有所疑惑,。今天小編就拋磚引玉,,就這些問題做一次解析。
一,、原理
三角法的原理如下圖所示,,激光器發(fā)射激光,在照射到物體后,,反射光由線性CCD接收,,由于激光器和探測器間隔了一段距離,所以依照光學路徑,,不同距離的物體將會成像在CCD上不同的位置,。按照三角公式進行計算,就能推導出被測物體的距離,。
光看原理,,是不是覺得挺簡單。
圖1,、三角法測距原理
然而TOF的原理更加簡單,。如圖2所示,激光器發(fā)射一個激光脈沖,,并由計時器記錄下出射的時間,,回返光經接收器接收,并由計時器記錄下回返的時間,。兩個時間相減即得到了光的“飛行時間”,,而光速是一定的,因此在已知速度和時間后很容易就可以計算出距離,。
圖2,、TOF測距原理
可惜的是,要是所有事情做起來都如同想起來一樣簡單,,那世界就太美好了,。這兩種方案在具體實現(xiàn)時都會有各自的挑戰(zhàn),但是相比起來,,TOF要攻克的難關顯然要多得多,。
TOF雷達的實現(xiàn)難點主要在于:
1.首先是計時問題,。在TOF方案中,距離測量依賴于時間的測量,。但是光速太快了,,因此要獲得精確的距離,對計時系統(tǒng)的要求也就變得很高,。一個數(shù)據(jù)是,,激光雷達要測量1cm的距離,對應的時間跨度約為65ps,。稍微熟悉電氣特性的同學應該就知道這背后對電路系統(tǒng)意味著什么,。
2.其次是脈沖信號的處理。這里面又分兩個部分:
a)一個是激光的:三角雷達里對激光器驅動幾乎沒什么要求,,因為測量依賴的激光回波的位置,,所以只需要一個連續(xù)光出射就可以了。但是TOF卻不行,,不光要脈沖激光,,而且質量還不能太差,目前TOF雷達的出射光脈寬都在幾納秒左右,,上升沿更是要求越快越好,,因此每家產品的激光驅動方案也是有高低之分的。
b)另一個是接收器的,。一般來說回波時刻鑒別其實是對上升沿的時間鑒別,,因此在對回波信號處理時,必須保證信號盡量不要失真,。另外,,即便信號沒有失真,由于回波信號不可能是一個理想的方波,,因此在同一距離下對不同物體的測量也會導致前沿的變動,。比如對同一位置的白紙和黑紙的測量,可能得到如下圖的兩個回波信號,,而時間測量系統(tǒng)必須測出這兩個前沿是同一時刻的(因為距離是同一距離),,這就需要特別的處理。
圖3,、不同反射率的回波信號差異
除此以外,,接收端還面臨著信號飽和、底噪處理等等問題,,可以說困難重重,。
二、性能PK,,知其然可知其所以然?
說了這么多,,其實從下游用戶的角度,,并不關心你實現(xiàn)起來簡單還是難。用戶最關心的不外乎兩點:性能和價格,。先說性能,,如果了解這個行業(yè)的人大多知道,TOF雷達從性能上是優(yōu)于三角雷達的,。但是具體體現(xiàn)在哪些方面,,背后的原因又是什么呢?
1.測量距離
從原理上來說,TOF雷達可以測量的距離更遠,。實際上,在一些要求測量距離的場合,,比如無人駕駛汽車應用,,幾乎都是TOF雷達。三角雷達測不遠,,主要有幾個方面的原因:一是原理上的限制,,其實仔細觀察圖1不難發(fā)現(xiàn),三角雷達測量的物體距離越遠,,在CCD上的位置差別就越小,,以致于在超過某個距離后,CCD幾乎無法分辨,。二是三角雷達沒辦法像TOF雷達那樣獲得較高的信噪比,。TOF采用脈沖激光采樣,并且還能嚴格控制視場以減少環(huán)境光的影響,。這些都是長距離測量的前提條件,。
當然,距離長短并不代表絕對的好壞,,這取決于具體的使用場景,。
2.采樣率
激光雷達描繪環(huán)境時,輸出的是點云圖像,。每秒能夠完成的點云測量次數(shù),,就是采樣率。在轉速一定的情況下,,采樣率決定了每一幀圖像的點云數(shù)目以及點云的角分辨率,。角分辨率越高,點云數(shù)量越多,,則圖像對周圍環(huán)境的描繪就越細致,。
就市面上的產品而言,三角法雷達的采樣率一般都在20k以下,,TOF雷達則能做到更高(例如星秒的TOF雷達PAVO最高可以達到100k的采樣率),。究其原因,,TOF完成一次測量只需要一個光脈沖,實時時間分析也能很快響應,。但是三角雷達需要的運算過程耗時則更長,。
圖4、對同一位置物體,,不同采樣率的成像效果
(A):低采樣率點云圖樣;(B):高采樣率點云圖樣(PAVO)
3.精度
激光雷達本質上是個測距設備,,因此距離的測量精度是毫無疑問的核心指標。在這一點上,,三角法在近距離下的精度很高,,但是隨著距離越來越遠,其測量的精度會越來越差,,這是因為三角法的測量和角度有關,,而隨著距離增加,角度差異會越來越小,。所以三角雷達在標注精度時往往都是采用百分比的標注(常見的如1%),,那么在20m的距離時最大誤差就在20cm。而TOF雷達是依賴飛行時間,,時間測量精度并不隨著長度增加有明顯變化,,因此大多數(shù)TOF雷達在幾十米的測量范圍內都能保持幾個厘米的精度。
2.轉速(幀率)
在機械式雷達中,,圖像幀率就是由電機的轉速決定的,。就目前市面上的二維激光雷達而言,三角雷達的最高轉速通常在20Hz以下,,TOF雷達則可以做到30Hz-50Hz左右,。通常三角雷達通常采用采用上下分體的結構,即上面轉的部分負責激光發(fā)射,、接收和采集,,下部分負責電機驅動和供電等,過重的運動組件限制了更高的轉速,。而TOF雷達通常采用一體化的半固態(tài)結構,,電機僅需帶動反射鏡,因此電機的功耗很小,,并且可以支持的轉速也更高,。
當然,這里提到的轉速的區(qū)別只是對現(xiàn)有產品的一個客觀分析,。其實轉速和雷達采用TOF還是三角法沒有本質的聯(lián)系,,主流的多線TOF雷達也都是采用的上下分體的結構,畢竟同軸結構的光學設計受到許多限制。多線TOF雷達的轉速一般也都在20Hz以下,。
不過,,高轉速(或者說高幀率)對點云成像效果是很有意義的。高幀率更利于捕捉高速運動的物體,,比如高速公路上行駛的車輛,。此外,在自身建圖時,,運動中的雷達建圖會發(fā)生畸變(舉個例子,,如果一個靜止的雷達掃描一圈是一個圓,那么當雷達直線運動時,,掃描出的圖像就變成一個橢圓),。顯然,高轉速可以更好的減少這種畸變的影響,。
三,、成本
如果只看性能比較,似乎TOF雷達的性能完全壓過三角雷達,。不過產品的競爭并不僅僅是性能參數(shù)的比拼,用戶在乎的還有價格,、穩(wěn)定性和服務等等,。
至少在成本方面,目前三角雷達的成本是低于TOF雷達的,,近距離的三角雷達成本已經在百元級別,。而目前進口TOF雷達的售價動輒就要萬元以上??梢哉f,,高昂的價格是限制TOF激光雷達應用進一步拓展的重要因素。
不過,,隨著近年來國內TOF雷達廠商的崛起,,TOF雷達的成本已經得到大幅的降低,國產TOF雷達產品的價格相比于進口品牌,,已經有相當大的競爭力,。未來,隨著生產工藝的完善和出貨量的進一步提升,,相信TOF雷達的成本還會進一步壓縮,,降到和三角雷達相近的水平也不是沒有可能。
四,、應用場景
三角雷達的場景主要是在室內短距離的應用,,最典型的場景就是掃地機器人。而在探測范圍較大場景(比如商場、機場或者車站),,以及室外場景,,TOF的應用則更為廣泛。另外值得一提的是,,三角雷達這種裸露在外轉動的方案,,使其產品在防塵防水方面非常脆弱,在一些特殊場景的應用,,比如AVG小車工作的車間經常會有很多灰塵,,在這種環(huán)境下,三角雷達的電機非常容易損壞,。相比之下,,TOF雷達采用的半固態(tài)設計,可以有更優(yōu)秀的防護效果,,工作壽命也更長,。
圖5、星秒TOF激光雷達PAVO
目前,,國內TOF雷達正在迅速發(fā)展,,星秒(SIMINICS)推出的2D TOF激光雷達PAVO,可以達到20m的測量距離,,100kHz的點云速率,,0.036°的最高角度分辨率,以及IP65的防護等級,,其應用已經涉及到無人駕駛,、機器人、AGV,、安防,、路政等諸多領域,是國產TOF雷達的優(yōu)秀代表,。