基于改進(jìn)馬爾科夫特征的圖像拼接檢測研究
2020年信息技術(shù)與網(wǎng)絡(luò)安全第2期
劉進(jìn)林,,李欣竹,蔣晨琛
(中國人民公安大學(xué) 警務(wù)信息工程與網(wǎng)絡(luò)安全學(xué)院,,北京 100038)
摘要: 針對(duì)傳統(tǒng)馬爾科夫特征拼接檢測準(zhǔn)確率不高的問題,,提出了一種有效的馬爾科夫特征提取方法,。與傳統(tǒng)馬爾科夫特征的計(jì)算過程不同,只計(jì)算水平和垂直兩個(gè)方向的轉(zhuǎn)移概率矩陣,,選擇四個(gè)轉(zhuǎn)移概率矩陣中對(duì)應(yīng)位置求和后的值作為最終特征,。求和操作不僅降低了特征維度,而且使真實(shí)圖像與拼接圖像之間的概率分布區(qū)分更加明顯,。所提出的算法的特征維度與數(shù)據(jù)集無關(guān),。該方法在哥倫比亞彩色拼接檢測圖庫,、CASIA V1.0和CASIA V2.0數(shù)據(jù)集上測試的準(zhǔn)確率分別為94.38%、99.19%,、96.02%,。
中圖分類號(hào):TP751.1
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2096-5133.2020.02.003
引用格式:劉進(jìn)林,李欣竹,,蔣晨琛.基于改進(jìn)馬爾科夫特征的圖像拼接檢測研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,,2020,39(2):13-18.
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2096-5133.2020.02.003
引用格式:劉進(jìn)林,李欣竹,,蔣晨琛.基于改進(jìn)馬爾科夫特征的圖像拼接檢測研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,,2020,39(2):13-18.
Research on image splicing detection based on improved Markov
Liu Jinlin,Li Xinzhu,Jiang Chenchen
(Institute of Police Information Engineering and Network Security,People′s Public Security University of China,,Beijing 100038,,China)
Abstract: Aiming at the problem that the splicing detection accuracy of traditional Markov feature is not high,this paper proposes an efficient Markov feature extraction method for image splicing detection.Different from traditional Markov feature,this paper only calculates the transition probability matrix in both the horizontal and vertical directions,and chooses the sum of four Markov transition probability values at the corresponding position in the probability matrix as a feature vector.The summation operation not only reduces the number of features,but also enlarges the discrimination of the probability distributions between the authentic and the spliced images.A fixed number of features,regardless of the test datasets,are used in the proposed algorithm. This method achieves the accuracy of 94.38%,99.19% and 96.02% at Columbia image splicing detection evaluation dataset,CASIA V1.0 and CASIA V2.0 detection evaluation dataset respectively.
Key words : image forensics;splicing detection;Markov transition probability;Markov feature selection
0 引言
隨著信息技術(shù)的發(fā)展,,圖像偽造成本變得越來越低,,帶有惡意目的的圖像篡改給人類社會(huì)帶來許多不利的影響。圖像拼接是圖像偽造中最常見的手段,,圖像拼接檢測領(lǐng)域的研究日益增多,,提出了各種檢測圖像拼接的方法。
前些年,,檢測圖像拼接的方法主要集中在拼接圖像造成的不連續(xù)性引起的全局統(tǒng)計(jì)性質(zhì)的變化上,。文獻(xiàn)[1]提出了結(jié)合小波域的函數(shù)矩特征與HilbertHuang變換(HHT)進(jìn)行拼接檢測。文獻(xiàn)[2]提出了結(jié)合函數(shù)矩特征與二維相位一致性的方法,。利用全局統(tǒng)計(jì)性質(zhì)變化進(jìn)行檢測的方法不足之處是特征維數(shù)高而且準(zhǔn)確率不高,。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000003152
作者信息:
(中國人民公安大學(xué) 警務(wù)信息工程與網(wǎng)絡(luò)安全學(xué)院,北京 100038)
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。