College of Electric Information and Automation,,Civil Aviation University of China,,Tianjin 300300,China
Abstract: Aiming at the problem that the surplus torque interference of the electric servo system of the aircraft steering system is difficult to suppress, firstly, a mathematical model is established according to the system structure and working principle. Then, on this basis, the composite control strategy is designed, which not only combines the PID controller parameter setting of BP neural network, but also combines the angular velocity feedforward and torque velocity feedback, so as to improve the system stability characteristics and loading accuracy. The dynamics performance of the system is simulated respectively by MATLAB. Simulation results show that the method not only can overcome the surplus torque, but also can achieve good track results, and meet the demand of performance index of the system.
Key words : electric servo system of aircraft steering gear,;surplus torque,;PID control;BP neural network