基于KDMSPCS-GRNN的室內(nèi)定位技術(shù)研究
信息技術(shù)與網(wǎng)絡(luò)安全
王 超1,,單志勇2
(1.東華大學(xué) 信息科學(xué)與技術(shù)學(xué)院,,上海201620;2.數(shù)字化紡織技術(shù)教育部工程中心,,上海201620)
摘要: 針對利用廣義神經(jīng)網(wǎng)絡(luò)(Generalized Regression Neural Network,,GRNN)搭建的定位預(yù)測模型定位精度低、效率慢等問題,,基于動態(tài)分群策略,,提出一種線性遞減粒子群(Linear Decreasing Contraction Particle Swarm Optimization,LDCPSO)和布谷鳥(Cuckoo Search,,CS)混合尋優(yōu)算法,,并利用此算法為GRNN選擇最優(yōu)參數(shù),構(gòu)建定位預(yù)測模型,。該算法主要利用K均值聚類算法(K-means)對整個種群進行周期性的分群,,底層使用LDCPSO算法優(yōu)化各個子群,并將最優(yōu)粒子傳至高層,,高層使用CS算法優(yōu)化各個子群的最優(yōu)粒子,,并將最終結(jié)果返回底層,執(zhí)行下一次迭代,。實驗過程中,,一方面將提出的算法應(yīng)用于多個測試函數(shù),結(jié)果表明該算法具有更好的收斂速度和收斂精度,;另一方面利用該算法搭建定位模型,,并與其他定位模型對比,結(jié)果顯示該定位模型具有更好的定位效果,。
中圖分類號: TP301.6
文獻標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.004
引用格式: 王超,,單志勇. 基于KDMSPCS-GRNN的室內(nèi)定位技術(shù)研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,,40(4):20-27,,45.
文獻標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.004
引用格式: 王超,,單志勇. 基于KDMSPCS-GRNN的室內(nèi)定位技術(shù)研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,,40(4):20-27,,45.
Research on indoor positioning technology based on KDMSPCS-GRNN
Wang Chao1,Shan Zhiyong2
(1.School of Information Science and Technology,,Donghua University,,Shanghai 201620,China,; 2.Digital Textile Technology Ministry of Education Engineering Center,,Shanghai 201620,China)
Abstract: Aiming at the problems of low positioning accuracy and slow efficiency in the positioning prediction model built by the generalized neural network(GRNN),,based on the dynamic clustering strategy,this paper proposed a Linear Decreasing Contraction Particle Swarm Optimization(LDCPSO) and Cuckoo Search(CS) hybrid optimization algorithm,and used this algorithm to select the optimal parameters for GRNN to construct a positioning prediction model.The algorithm mainly uses the K-means clustering algorithm to periodically group the entire population.The bottom layer uses the LDCPSO algorithm to optimize each subgroup,and the optimal particles are transmitted to the high level.The high level uses the CS algorithm to optimize the optimal particles of each subgroup and returns the final result to the bottom layer to execute the next iteration.During the experiment,on the one hand,,the proposed algorithm was applied to multiple test functions,and the results showed that the algorithm has better convergence speed and accuracy;on the other hand,the algorithm was used to build a positioning model and compared with other positioning models,,the results showed the positioning model has a better positioning effect.
Key words : LDCPSO algorithm;CS algorithm,;K-mean algorithm,;GRNN algorithm;test function
0 引言
隨著第四代網(wǎng)絡(luò)通信技術(shù)的成熟和微電子行業(yè)的迅速發(fā)展,,移動終端設(shè)備在人們?nèi)粘I钪械玫胶艽蟪潭鹊钠占?,人們對基于用戶位置服?wù)(Location Based Services,LBS)[1]的需求愈來愈廣泛,。而室內(nèi)定位技術(shù)作為LBS中必不可少的底層技術(shù),,它的好壞將直接影響服務(wù)的質(zhì)量,因此室內(nèi)定位領(lǐng)域受到技術(shù)人員廣泛關(guān)注,,無線定位技術(shù)得到了極大的發(fā)展,。目前已經(jīng)提出的定位技術(shù)有RFID,、UWB,、ZigBee[2]和WiFi[3]等。相比于其他幾種技術(shù)而言,,WiFi在人們?nèi)粘I钪械母采w率更高,,且對硬件設(shè)備要求較低,故而更具實踐價值,。目前WiFi定位技術(shù)已經(jīng)成為室內(nèi)定位技術(shù)研究的主要熱點之一,。
本文詳細(xì)內(nèi)容請下載:http://forexkbc.com/resource/share/2000003473
作者信息:
王 超1,單志勇2
(1.東華大學(xué) 信息科學(xué)與技術(shù)學(xué)院,,上海201620,;2.數(shù)字化紡織技術(shù)教育部工程中心,上海201620)
此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。