《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 聲學多普勒流速快速測量的設計
聲學多普勒流速快速測量的設計
2021年電子技術應用第5期
張 羽,李永倩,鮑 帥,,范寒柏
華北電力大學 電氣與電子工程學院,,河北 保定071000
摘要: 傳統(tǒng)的多普勒流速剖面測量儀將混頻正交與低通濾波在軟件中實現(xiàn),存在測量時間長,、精度不高等問題。為解決上述問題,采用運算速度更快,、內存容量更大的 STM32H743單片機作為主控芯片,同時設計了將信號混頻,、正交與 FIR 低通濾波在硬件電路中實現(xiàn)的多普勒流速剖面儀,,這樣大大減少了 CPU 的運算時間,提高了測量精度,。運用 FFT 算法進行信號質量分析,,利用自相關算法計算出各層流速。通過試驗,,對測得的多普勒頻偏以及流速進行分析,,結果表明,系統(tǒng)的設計滿足在實際小型河流中的精確測量,,具有可行性,。
中圖分類號: TN913
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200546
中文引用格式: 張羽,李永倩,,鮑帥,,等. 聲學多普勒流速快速測量的設計[J].電子技術應用,2021,,47(5):54-58.
英文引用格式: Zhang Yu,,Li Yongqian,Bao Shuai,,et al. Design of rapid measurement of acoustic Doppler velocity[J]. Application of Electronic Technique,,2021,47(5):54-58.
Design of rapid measurement of acoustic Doppler velocity
Zhang Yu,Li Yongqian,,Bao Shuai,,F(xiàn)an Hanbai
College of Electrical and Electronic Engineering,North China Electric Power University,,Baoding 071000,,China
Abstract: In traditional Doppler velocity measurement, mixing quadrature and low-pass filtering are generally implemented in software, which results in relatively long measurement time and low accuracy. In order to solve the above-mentioned, STM32H743 single chip computer with faster operation speed and larger memory capacity has been used as the main control chip, and a Doppler velocity profiler is designed by using signal mixing, orthogonal and FIR low-pass filtering in the hardware circuit, which greatly reduces the CPU operation time and improves the measurement efficiency. At the same time, FFT algorithm has been used to analyze the signal quality, and autocorrelation algorithm has been used to calculate the velocity of each layer. Through the experiment, the frequency deviation and velocity are analyzed. The results show that the design of the system can meet the requirements of accurate measurement in actual small streams, and it is feasible.
Key words : orthogonal mixing;Doppler velocity profiler,;quality analysis,;autocorrelation algorithm

0 引言

    傳統(tǒng)的聲學多普勒流速剖面儀(Acoustic Doppler Current Profiler,ADCP)在單片機內部進行正交變換,、FIR濾波來獲取多普勒頻偏信號的實部和虛部,,最后通過自相關算法計算出多普勒頻偏,得出流速,,由于正交變換和FIR濾波等均在軟件中完成,,因此數(shù)據處理的時間較長,并且硬件電路需要外擴SRAM,,不便于電路設計,,成本也較高[1]。本系統(tǒng)采用內存1 MB,、主頻高達400 MHz的STM32H743作為CPU,,無需外部SRAM[2],并將回波信號的正交變換以及FIR低通濾波在硬件電路中實現(xiàn),,通過單片機內部16 bit的A/D轉換器,,同時對兩路正交信號進行采樣,這樣數(shù)據處理的速度顯著提高,,測量的精度也進一步提高,,在實際工程中具有很強的實用性。

1 系統(tǒng)的構成及應用原理

    多普勒流速剖面測量系統(tǒng)主要由電源系統(tǒng),、發(fā)射系統(tǒng),、接收系統(tǒng)、混頻濾波系統(tǒng),、正交變換系統(tǒng),、數(shù)據采集系統(tǒng)以及通信系統(tǒng)等組成[3]。單片機驅動換能器向水中發(fā)射超聲波,,超聲波遇到水中的小顆粒發(fā)生漫反射,,回波信號經接收匹配電路、LC選頻放大電路,、二級放大電路后,,進入中頻混頻器與本振信號混頻得到中頻信號,,對中頻信號進行選頻放大、正交處理后,,經過低通濾波器后得到多普勒頻偏,,進入單片機進行A/D信號采集處理,運算處理完成后,,通過Modbus協(xié)議進行數(shù)據輸出[4]




本文詳細內容請下載:http://forexkbc.com/resource/share/2000003522




作者信息:

張  羽,,李永倩,,鮑  帥,范寒柏

(華北電力大學 電氣與電子工程學院,,河北 保定071000)

此內容為AET網站原創(chuàng),,未經授權禁止轉載。