《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于深度學(xué)習(xí)的桿塔三維姿態(tài)實(shí)時(shí)估計(jì)
基于深度學(xué)習(xí)的桿塔三維姿態(tài)實(shí)時(shí)估計(jì)
2021年電子技術(shù)應(yīng)用第6期
李國(guó)強(qiáng)1,,彭熾剛1,汪 勇1,,向東偉2,,楊成城2
1.廣東電網(wǎng)有限責(zé)任公司 機(jī)巡作業(yè)中心,,廣東 廣州510062;2.武漢匯卓航科技有限公司,,湖北 武漢430070
摘要: 針對(duì)目前無人機(jī)航拍影像桿塔識(shí)別算法中,,普遍是無人機(jī)通過傾斜攝影技術(shù)獲取到桿塔的原始遙觀影像數(shù)據(jù),經(jīng)過機(jī)器學(xué)習(xí)訓(xùn)練,,識(shí)別其余圖片數(shù)據(jù)中的桿塔,。其中存在獲取機(jī)器訓(xùn)練所需的圖片數(shù)據(jù)來源緩慢、只能二維識(shí)別圖片中桿塔等問題,。提出了基于深度學(xué)習(xí)的桿塔三維姿態(tài)實(shí)時(shí)估計(jì)的算法,。首先,通過三維平臺(tái)合成影像數(shù)據(jù),;其次,,通過Deep-Object-Pose訓(xùn)練及其處理;然后測(cè)試真實(shí)的圖片數(shù)據(jù)或者實(shí)時(shí)視頻,,達(dá)到智能識(shí)別桿塔的三維空間姿態(tài)信息,。該算法為無人機(jī)自動(dòng)尋找桿塔目標(biāo)和智能精細(xì)化巡檢提供新的思路。
中圖分類號(hào): TN014,;TP183
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.200280
中文引用格式: 李國(guó)強(qiáng),,彭熾剛,汪勇,,等. 基于深度學(xué)習(xí)的桿塔三維姿態(tài)實(shí)時(shí)估計(jì)[J].電子技術(shù)應(yīng)用,,2021,47(6):87-91,,95.
英文引用格式: Li Guoqiang,,Peng Chigang,Wang Yong,,et al. Real-time estimation of three-dimensional attitude of towers based on deep learning[J]. Application of Electronic Technique,,2021,47(6):87-91,,95.
Real-time estimation of three-dimensional attitude of towers based on deep learning
Li Guoqiang1,,Peng Chigang1,Wang Yong1,Xiang Dongwei2,,Yang Chengcheng2
1.Machine Operation Center,,Guangdong Power Grid Co.,Ltd.,,Guangzhou 510062,,China; 2.Wuhan Huizhuohang Technology Co.,,Ltd.,,Wuhan 430070,China
Abstract: According to the current aerial image tower identification algorithm of UAV, it is common for UAV to obtain the original remote viewing image data of the tower through tilt photography technology, and identify the tower in the rest image data through machine learning training.Among them, there are some problems such as slow source of image data needed for machine training and two-dimensional identification of the tower in the picture.In this paper, an algorithm based on deep-object-pose is proposed for real-time aerial aerial aerial aerial recognition of the three-dimensional attitude of the tower.Firstly, image data is synthesized by three-dimensional platform.Secondly, deep-object-pose training and treatment were carried out.Then test the real picture data or real-time video, to achieve intelligent recognition of the tower's three-dimensional attitude information.The experimental results show that this algorithm will provide a new idea for uav to automatically find the target of tower and intelligent fine inspection.
Key words : Deep-Object-Pose,;3D attitude recognition of tower,;UAV;aerial image

0 引言

    隨著國(guó)民經(jīng)濟(jì)的增長(zhǎng)和無人機(jī)在電網(wǎng)的逐步應(yīng)用推廣,,繁重的無人機(jī)作業(yè)任務(wù)讓無人機(jī)的智能化顯得尤為重要,。同時(shí),機(jī)器學(xué)習(xí)技術(shù)的飛速發(fā)展,,給無人機(jī)的智能化提供了新的思路,。但是,機(jī)器視覺的目前所需要的訓(xùn)練數(shù)據(jù)是通過無人機(jī)等手段采集的,,不僅耗時(shí)長(zhǎng),、耗人力,而且檢測(cè)往往只是針對(duì)單張圖片,,進(jìn)行二維平面上的識(shí)別,,面對(duì)實(shí)時(shí)視頻檢測(cè)比較卡頓,同樣無法識(shí)別物體三維空間姿態(tài),。

    因此,,需要改善視頻實(shí)時(shí)識(shí)別的卡頓,改進(jìn)訓(xùn)練數(shù)據(jù)的采集技術(shù),。傳統(tǒng)的目標(biāo)檢測(cè)算法大多數(shù)以圖像識(shí)別為基礎(chǔ),。一般可以在圖片上使用窮舉法或者滑動(dòng)窗口選出所有物體可能出現(xiàn)的區(qū)域框,對(duì)這些區(qū)域框提取特征并使用圖像識(shí)別分類方法,,得到所有分類成功的區(qū)域后,,通過非極大值抑制輸出結(jié)果。近些年來相關(guān)學(xué)者提出采用人工智能的方法實(shí)現(xiàn)目標(biāo)檢測(cè),,其中包括K最近鄰KNN[1],、隨機(jī)森林Random Forest[2]、線性向量機(jī)SVM[3],。這些淺層機(jī)器學(xué)習(xí)方法在建模過程中功能簡(jiǎn)單,,復(fù)雜函數(shù)和分類問題的表達(dá)有限,,魯棒性差,準(zhǔn)確度和精度低,。而對(duì)于難以應(yīng)對(duì)指數(shù)增長(zhǎng)的遙感圖像目標(biāo)特征提取,,也不能達(dá)到很好的特征分析和識(shí)別效果。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000003580,。




作者信息:

李國(guó)強(qiáng)1,,彭熾剛1,,汪  勇1,,向東偉2,楊成城2

(1.廣東電網(wǎng)有限責(zé)任公司 機(jī)巡作業(yè)中心,,廣東 廣州510062,;2.武漢匯卓航科技有限公司,湖北 武漢430070)





wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。