基于ResNet50對地震救援中人體姿態(tài)估計的研究
信息技術(shù)與網(wǎng)絡(luò)安全 3期
鄔春學(xué),賀欣欣
(上海理工大學(xué) 光電信息與計算機工程學(xué)院,,上海200093)
摘要: 調(diào)查發(fā)現(xiàn),,地震中死亡人數(shù)增加的原因主要是錯過救援的黃金時間,因此可通過救援無人機自動對受災(zāi)人員進行行為識別與狀態(tài)分析,。人體姿態(tài)估計是指對圖像中人體關(guān)節(jié)點和肢體進行檢測的過程,,在人機交互和行為識別應(yīng)用中起著重要的作用,然而由于背景復(fù)雜,、肢體被遮擋等因素導(dǎo)致標注人體關(guān)節(jié)點和肢體十分困難,。因此提出一種結(jié)合ResNet50及CPM的模型,該模型通過獲取圖像特征和精調(diào)機制,,計算出關(guān)節(jié)點依賴關(guān)系,,最后劃分到對應(yīng)人體。實驗表明,,該模型與其他模型對比能夠提高復(fù)雜場景下人體姿態(tài)估計的效果,。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.03.009
引用格式: 鄔春學(xué),賀欣欣. 基于ResNet50對地震救援中人體姿態(tài)估計的研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,,2022,,41(3):50-58,70.
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.03.009
引用格式: 鄔春學(xué),賀欣欣. 基于ResNet50對地震救援中人體姿態(tài)估計的研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,,2022,,41(3):50-58,70.
Research on human posture estimation in earthquake rescue based on ResNet50
Wu Chunxue,,He Xinxin
(School of Optical-Electrical and Computer Engineering,,University of Shanghai for Science and Technology, Shanghai 200093,,China)
Abstract: It was found that, the main reason for such a high number of deaths lies in the missing of prime rescue time. So rescue UAV can be used to recognize the behaviors of affected population automatically and analyze their status. Human pose estimation refers to the process of detecting humans′ joints and limbs in image, which plays a crucial role in human machine interaction and application of action recognition. However, due to the factors such as complex background and covering of limbs, it is very difficult to note the human joints and limbs in image. To address the issue, this paper proposed a model combining ResNet50 and convolutional pose machine(CPM). According to the model, image features are obtained by residual network and the dependence between joints is obtained by fine adjustment mechanism. Finally the key points aggregated are divided to the corresponding human body. Experiment shows that compared with other human pose estimation models, such model can enhance the effect of human post estimation under complex earthquake rescue scenario.
Key words : neural network,;human pose estimation;ResNet50,;part affinity fields,;earthquake rescue
0 引言
據(jù)EM-DAT報道[1]稱,2000年至2019年間特大地震自然災(zāi)害導(dǎo)致死亡的受災(zāi)人數(shù)在九種自然災(zāi)害死亡人數(shù)中居首位,,大約占總受災(zāi)人數(shù)的58%,,在地震發(fā)生后高效率地救援十分必要?;诔墒斓挠布O(shè)備[2],,救援無人機搜尋傷員對其進行動作識別與狀態(tài)分析,可顯著提高救援的效率,。因此,,開展基于深度學(xué)習(xí)的實時無人機災(zāi)后救援人體姿態(tài)估計研究顯得十分必要[3-4],。
目前,無人駕駛的多旋翼無人機配備了高清攝像頭和高性能的電池,,可滿足長時間懸停并傳輸震后實時救援的畫面[5],。在此基礎(chǔ)上,通過無人機獲取的震后救援現(xiàn)場的實時圖像,,采用深度學(xué)習(xí)檢測和跟蹤方法[6]對受災(zāi)后傷員的位置以及人體姿態(tài)進行檢測,,以供指揮中心進行快速部署救援并能夠掌握震后的全局狀況。通常情況下,,其對人體骨骼的關(guān)鍵部件的具體檢測精度有一定的要求,,不僅要對整個人體進行精準檢測,而且還要對人體的關(guān)鍵節(jié)點,,例如頭部,、肩關(guān)節(jié)、肘關(guān)節(jié),、膝蓋等部分進行更詳細的檢測和跟蹤,,從而掌握更詳細的震后人員狀態(tài)。
本文詳細內(nèi)容請下載:http://forexkbc.com/resource/share/2000004026
作者信息:
鄔春學(xué),,賀欣欣
(上海理工大學(xué) 光電信息與計算機工程學(xué)院,,上海200093)
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載,。