《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于單分類結合模糊寬度學習的負荷辨識方法
基于單分類結合模糊寬度學習的負荷辨識方法
2022年電子技術應用第5期
王 毅1,,王蕭陽1,李松濃2,,陳 濤2,侯興哲2,,付秀元3
1.重慶郵電大學 通信與信息工程學院,,重慶400065,; 2.國網(wǎng)重慶市電力公司電力科學研究院,,重慶400014;3.國家電投集團數(shù)字科技有限公司,,北京100080
摘要: 非侵入式負荷監(jiān)測是智能用電的關鍵技術,,有助于加強負荷側管理,提高用電效率,。隨著電力負荷類型和數(shù)量的迅速增加,,當模型中接入訓練樣本之外的未知電器時會導致模型誤判,降低負荷識別的準確性,。為了提高負荷識別模型的穩(wěn)定性以及識別精度,,提出一種單分類結合模糊寬度學習的電力負荷識別方法。首先,,構建負荷特征庫實現(xiàn)多負荷識別,;然后,通過單分類K近鄰方法進行樣本篩選,,排除未知電器的干擾,;最后,提出一種基于模糊寬度學習系統(tǒng)的負荷識別方法解決識別模型復雜度高,、識別速率慢的問題,。實驗結果表明,所提出的算法能夠快速有效地識別電力負荷,。
中圖分類號: TN911.72,;TM714
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.212334
中文引用格式: 王毅,王蕭陽,,李松濃,,等. 基于單分類結合模糊寬度學習的負荷辨識方法[J].電子技術應用,2022,,48(5):51-55,,60.
英文引用格式: Wang Yi,Wang Xiaoyang,Li Songnong,,et al. Load identification method based on one class classification combined with fuzzy broad learning[J]. Application of Electronic Technique,,2022,48(5):51-55,,60.
Load identification method based on one class classification combined with fuzzy broad learning
Wang Yi1,,Wang Xiaoyang1,Li Songnong2,,Chen Tao2,,Hou Xingzhe2,F(xiàn)u Xiuyuan3
1.Communication and Information Engineering College,,Chongqing University of Posts and Telecommunications,, Chongqing 400065,China,; 2.Chongqing Electric Power Research Institute,,Chongqing 400014,China,; 3.State Power Investment Group Digital Technology Co.,,Ltd.,Beijing 100080,,China
Abstract: Non-Intrusive Load Monitoring(NILM) is a key technology for smart electricity consumption, which helps strengthen load-side management and improve electricity efficiency. With the rapid increase of power load types and quantities, when unknown electrical appliances outside the training sample are connected to the model, it will cause the model to misjudge and reduce the accuracy of load identification. In order to improve the stability and accuracy of the load identification model, a power load identification method combining single classification and fuzzy broad learning is proposed. The one-class K-nearest neighbor method is used to screen samples to detect unknown electrical appliances and control the risk of misjudgment. Considering the recognition rate and model complexity, the fuzzy broad learning system is used to classify and recognize the screened samples. The experimental results show that the algorithm proposed in this paper can effectively detect unknown electrical appliances, prevent model misjudgment, and get better results for both single-load and multi-load switching.
Key words : non-intrusive load identification,;steady-state feature of load current;fuzzy broad learning system,;one class K-nearest neighbor,;TS fuzzy syste

0 引言

    電力是推進工業(yè)社會發(fā)展的主要能源之一。在智能電網(wǎng)[1-2]的建設中,,非侵入式負荷監(jiān)測(Non-Intrusive Load Monitoring,,NILM)[1-2]具有較高的研究價值和廣闊的應用前景。NILM通過用戶負荷信息挖掘,,可以有效緩解能源危機,,節(jié)能減耗,提高經(jīng)濟效益,。不同于侵入式方法,,NILM技術通過在主電能輸入端安裝監(jiān)測設備來獲取總用電信息從而識別用戶的負荷類型和工作狀態(tài),提高了測量設備安全性,,具有成本低,、維護方便等優(yōu)點。因此,,NILM將會是今后電力測量方向發(fā)展的主流趨勢,,在電力需求側管理技術發(fā)展以及智能電網(wǎng)的建設上具有重要意義,。

    非侵入式負荷識別方法相比于侵入式方法由于其安裝便利、成本低等特點引起了更多學者的關注,,取得了較多的研究成果,。文獻[3]引入了總諧波失真識別功率相近的電力負荷;文獻[4]通過提取負荷的暫態(tài)特征,,計算貼近度進行負荷識別,,但暫態(tài)特征對采樣頻率要求較高;文獻[5]采用了V-I軌跡及深度學習的方法進行負荷識別,,取得了較好的識別效果,,但高頻數(shù)據(jù)的V-I軌跡計算量較大;文獻[6]通過將K最鄰近方法與核Fisher判別相結合,,控制誤判風險,,提高識別能力及識別速率;文獻[7]通過提取負荷的有功功率與無功功率,,并采用人工神經(jīng)網(wǎng)絡的方法進行識別,,但識別率不高,。




本文詳細內(nèi)容請下載:http://forexkbc.com/resource/share/2000004276,。




作者信息:

王  毅1,王蕭陽1,,李松濃2,,陳  濤2,侯興哲2,,付秀元3

(1.重慶郵電大學 通信與信息工程學院,,重慶400065;

2.國網(wǎng)重慶市電力公司電力科學研究院,,重慶400014,;3.國家電投集團數(shù)字科技有限公司,北京100080)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權禁止轉載,。