《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于Radon變換的高分辨SAR圖像艦船目標(biāo)精細(xì)分割
基于Radon變換的高分辨SAR圖像艦船目標(biāo)精細(xì)分割
2023年電子技術(shù)應(yīng)用第5期
徐新瑤1,,2,,王小龍1
(1.中國(guó)科學(xué)院空天信息創(chuàng)新研究院,北京100094,;2.中國(guó)科學(xué)院大學(xué) 電子電氣與通信工程學(xué)院,北京 100094)
摘要: 隨著合成孔徑雷達(dá)(Synthetic Aperture Radar,, SAR)分辨率的提升,,利用SAR圖像進(jìn)行艦船檢測(cè)和識(shí)別逐漸成為海洋目標(biāo)監(jiān)視的重要手段。但受限于SAR成像機(jī)理,,高分辨SAR圖像旁瓣問(wèn)題開(kāi)始凸顯,,這嚴(yán)重影響艦船目標(biāo)的主體分割。提出一種基于Radon變換的艦船目標(biāo)精細(xì)分割算法,,通過(guò)將SAR圖像進(jìn)行Radon變換,,在Radon域?qū)崿F(xiàn)了旁瓣數(shù)據(jù)的識(shí)別與剔除。然后利用形態(tài)學(xué)濾波去除細(xì)碎旁瓣,,最終實(shí)現(xiàn)了SAR圖像旁瓣的有效抑制,。利用高分三號(hào)和COSMO-SkyMed衛(wèi)星圖像數(shù)據(jù)對(duì)算法進(jìn)行驗(yàn)證,結(jié)果表明該算法相比于現(xiàn)有分割算法,,在區(qū)域內(nèi)均勻性,、區(qū)域間差異性、形狀復(fù)雜度等方面均具有較好的提升,。
中圖分類號(hào):TN957
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.223260
中文引用格式: 徐新瑤,,王小龍. 基于Radon變換的高分辨SAR圖像艦船目標(biāo)精細(xì)分割[J]. 電子技術(shù)應(yīng)用,2023,,49(5):142-148.
英文引用格式: Xu Xinyao,,Wang Xiaolong. Fine segmentation of ship targets for high-resolution SAR images based on Radon transform[J]. Application of Electronic Technique,2023,,49(5):142-148.
Fine segmentation of ship targets for high-resolution SAR images based on Radon transform
Xu Xinyao1,,2,Wang Xiaolong1
(1.Aerospace Information Research Institute,, Chinese Academy of Sciences,, Beijing 100094, China,; 2.School of Electronic,, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049,, China)
Abstract: With the improvement of the resolution of synthetic aperture radar (SAR), the use of SAR images for ship detection and identification has gradually become an important means of marine target surveillance. However, limited by the SAR imaging mechanism, the side-lobe problem of high-resolution SAR images is becoming prominent gradually, which seriously affects the subject segmentation of ship targets. In this paper, a fine segmentation algorithm of ship target based on Radon transform is proposed. By performing Radon transform on SAR images, the identification and elimination of sidelobe are realized in the Radon domain. Then, the morphological filtering is used to remove the fine side lobes. Finally, the effective suppression of the SAR image side lobes is realized. The algorithm is verified by GF-3 and COSMO-SkyMed satellite image data. The results show that the algorithm has better performance in uniformity of intra region, dissimilarity of inter region, and complexity of shape compared with existing segmentation algorithms.
Key words : synthetic aperture radar (SAR),;sidelobe effect;fine segmentation,;Radon transform

0 引言

合成孔徑雷達(dá)(Synthetic Aperture Radar, SAR)是一種主動(dòng)式微波成像傳感器,,不同于光學(xué)和紅外傳感雷達(dá),SAR可實(shí)現(xiàn)全天候成像,,同時(shí)具備穿透云霧的能力,,可有效保證極端天氣條件下的穩(wěn)定工作。由于SAR具有以上優(yōu)良特性,,早在上世紀(jì)70年代,,搭載SAR傳感器的衛(wèi)星便在海洋監(jiān)測(cè)領(lǐng)域投入使用。經(jīng)過(guò)半個(gè)世紀(jì)的發(fā)展,,高分辨率星載SAR系統(tǒng)在海上艦船檢測(cè)與識(shí)別,、漁業(yè)管理、海洋救援等領(lǐng)域正發(fā)揮著至關(guān)重要的作用,。

在SAR圖像處理中,,作為艦船識(shí)別的關(guān)鍵算法,基于特征提取的SAR圖像檢測(cè)已得到人們的廣泛研究,。此類算法大致分為三個(gè)階段:一是目標(biāo)的精細(xì)分割,,即預(yù)處理階段;二是目標(biāo)的特征提取和選擇,;三是分類器或分類策略的設(shè)計(jì),。其中目標(biāo)的精細(xì)分割是為了剔除背景和旁瓣等干擾,便于艦船特征的準(zhǔn)確提取,,實(shí)現(xiàn)最終的正確分類,。隨著SAR分辨率的進(jìn)步越高,,人們?cè)讷@取艦船清晰的輪廓和紋理的同時(shí),,也伴隨著更為嚴(yán)重的旁瓣效應(yīng)。旁瓣通常在艦船的后向散射強(qiáng)烈,、聚焦效果較差等區(qū)域形成,,嚴(yán)重影響著艦船長(zhǎng)度、寬度,、面積等重要幾何特征的高精度提取,,因此不少學(xué)者針對(duì)旁瓣的抑制展開(kāi)了多項(xiàng)研究。


本文詳細(xì)內(nèi)容請(qǐng)下載:http://forexkbc.com/resource/share/2000005311




作者信息:

徐新瑤1,,2,,王小龍1

(1.中國(guó)科學(xué)院空天信息創(chuàng)新研究院,北京100094;2.中國(guó)科學(xué)院大學(xué) 電子電氣與通信工程學(xué)院,,北京 100094)


此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。