《電子技術(shù)應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 融合激光SLAM實現(xiàn)平衡車智能導航
融合激光SLAM實現(xiàn)平衡車智能導航
電子技術(shù)應用
權(quán)鈺涵1,,張嘯2,劉冬2,,3,,羅睿2,,3,賀云2,,3
(1.沈陽航空航天大學 自動化學院,,遼寧 沈陽 110136;2.中國科學院沈陽自動化研究所,,遼寧 沈陽110016,; 3.中國科學院機器人與智能制造創(chuàng)新研究院,,遼寧 沈陽 110169)
摘要: 國內(nèi)現(xiàn)有的兩輪智能平衡車幾乎不具有自主避障與定位功能。為了提高其安全性與靈活性,,在傳統(tǒng)的平衡車基礎(chǔ)上加入了激光SLAM技術(shù),,實現(xiàn)自主建圖、路徑規(guī)劃,、定位和避障,。運用卡爾曼濾波器對六軸傳感器采集的加速度和傾斜角進行數(shù)據(jù)融合處理,在建圖和定位方面,,采用Google發(fā)布的Cartographer算法,,路徑規(guī)劃和避障上采用Navigation功能包集成的move_base下的Teb算法。由于激光雷達建圖時需要車速比較緩慢,,并且需要盡可能避免抖動,,因此讓車模保持穩(wěn)定的運動狀態(tài)就很重要,為此首先對傳感器獲得的數(shù)據(jù)進行濾波,,其次對小車的PID參數(shù)進行細調(diào),。同時為了更方便地控制,加入藍牙功能,,通過藍牙控制小車運動,,實現(xiàn)快速建圖。在加入了SLAM技術(shù)之后,,傳統(tǒng)的平衡車可以實現(xiàn)避障和定位功能,,能夠?qū)崟r檢測出靜態(tài)和動態(tài)障礙物,并繞開障礙物規(guī)劃出最優(yōu)路線,,實現(xiàn)了無人駕駛功能,。
中圖分類號:TP242 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.233781
中文引用格式: 權(quán)鈺涵,張嘯,,劉冬,,等. 融合激光SLAM實現(xiàn)平衡車智能導航[J]. 電子技術(shù)應用,2023,,49(10):141-147.
英文引用格式: Quan Yuhan,,Zhang Xiao,Liu Dong,,et al. Implementation of the intelligent navigation of balance vehicle with laser SLAM[J]. Application of Electronic Technique,,2023,49(10):141-147.
Implementation of the intelligent navigation of balance vehicle with laser SLAM
Quan Yuhan1,,Zhang Xiao2,,Liu Dong2,3,Luo Rui2,,3,He Yun2,,3
(1.College of Automation,, Shenyang Aerospace University, Shenyang 110136,, China,; 2.Shenyang Institute of Automation, Chinese Academy of Sciences,, Shenyang 110016,, China; 3.Institutes for Robotics and Intelligent Manufacturing,, Chinese Academy of Sciences,, Shenyang 110169, China)
Abstract: Based on the existing two-wheeled intelligent balance car in China, it has almost no autonomous obstacle avoidance and positioning functions. In order to improve its safety and flexibility, laser SLAM technology is applied to the traditional self-balancing car to realize autonomous mapping and path planning, positioning and obstacle avoidance. The Kalman filter is used to fuse the acceleration and tilt angle collected by the six-axis sensor. In terms of mapping and positioning, the Cartographer algorithm released by Google is used, and the Teb algorithm under move base integrated by the Navigation function package is used for path planning and obstacle avoidance. Since the speed of the vehicle is relatively slow and the jitter needs to be avoided as much as possible when mapping the lidar, it is very important to keep the vehicle model in a stable motion state. For this purpose, the data obtained by the sensor is firstly filtered, and then the PID parameters of the car are fine-tuned. At the same time, for more convenient control, the bluetooth function is added to control the movement of the car through bluetooth to achieve rapid map building. After adding SLAM technology, traditional self-balancing scooters can realize obstacle avoidance and positioning functions, detect static and dynamic obstacles in real time, and plan an optimal route around obstacles, realizing the function of unmanned driving.
Key words : remote sensing,;sensor,;SLAM mapping and navigation;Cartographer,;Bluetooth remote control,;Kalman filter;Teb algorithm

0 引言

隨著科技的發(fā)展,,交通工具的變化日新月異,。新型的交通工具給人們帶來了許多方便,但是同樣也伴隨著出現(xiàn)了許多棘手的問題,,主要是操作的復雜性,、體積的大小、安全性及續(xù)航時間,,這幾點因素也是人們選擇時所關(guān)注的,,其中安全性和便捷性是尤為重要的。

在校園內(nèi),、小區(qū)內(nèi)或者非機動車行駛道路上,,平衡車被越來越多使用,但是對于初學者并不友好,,容易摔倒和發(fā)生碰撞,,尤其是在人員密集的地方,容易發(fā)生撞人事件,。從專業(yè)的角度上來說,,除了人為駕駛技術(shù)外,還因為平衡車平衡穩(wěn)定性比較差和不具有自主導航避障功能。

本文研究的是一種具有智能導航和建圖作用的兩輪直立平衡車,,由以下四部分構(gòu)成:

(1)傳感器系統(tǒng):編碼器,、單線激光雷達、MPU6050(加速度傳感器+陀螺儀傳感器),、藍牙HC-06,。

(2)控制系統(tǒng):樹莓派。

(3)驅(qū)動系統(tǒng):Arduino UNO R3主板,、TB6612FNG電機驅(qū)動模塊,、電源。

(4)執(zhí)行機構(gòu):主體使用亞克力板拼裝,,由兩個直流電機帶動差速車輪實現(xiàn)機器人行走,。其中驅(qū)動系統(tǒng)和執(zhí)行機構(gòu)構(gòu)成機器人系統(tǒng)。



本文詳細內(nèi)容請下載:http://forexkbc.com/resource/share/2000005728




作者信息:

權(quán)鈺涵1,,張嘯2,,劉冬2,3,,羅睿2,,3,賀云2,,3

(1.沈陽航空航天大學 自動化學院,,遼寧 沈陽 110136;2.中國科學院沈陽自動化研究所,,遼寧 沈陽110016,;3.中國科學院機器人與智能制造創(chuàng)新研究院,遼寧 沈陽 110169)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。