融合電影流行性與觀影時間的協同過濾算法
網絡安全與數據治理
錢澤俊,劉潤然
(杭州師范大學阿里巴巴商學院,,浙江杭州311121)
摘要: 相似度評估作為協同過濾推薦算法的核心,,盡管研究人員對其不斷改進,,卻仍難以在各個維度上充分利用評價數據。針對這一挑戰(zhàn),首先以用戶與電影之間的相互影響方式作為切入點,,對二者間可能存在的自洽邏輯進行探究,,提出了電影流行度計算公式用于對電影進行加權;接著以用戶觀影時間作為研究對象,,探究用戶觀影喜好的轉變與觀影時間順序之間的聯系,,并結合肯德爾相關系數提出了觀影順序一致性度量公式;最后將以上研究內容與傳統(tǒng)相似度算法融合,,并基于Netflix Prize數據集與豆瓣電影評價數據集對改進后的相似度算法進行驗證,。實驗結果表明改進后的相似度算法擁有更高的推薦準確度。
中圖分類號:TP3913文獻標識碼:ADOI: 10.19358/j.issn.2097-1788.2024.02.009
引用格式:錢澤俊,,劉潤然.融合電影流行性與觀影時間的協同過濾算法[J].網絡安全與數據治理,,2024,43(2):54-63.
引用格式:錢澤俊,,劉潤然.融合電影流行性與觀影時間的協同過濾算法[J].網絡安全與數據治理,,2024,43(2):54-63.
Collaborative filtering algorithm combining movie popularity and viewing time
Qian Zejun,,Liu Runran
(Alibaba Business School, Hangzhou Normal University, Hangzhou 311121, China)
Abstract: As the core of the collaborative filtering recommendation algorithm, similarity evaluation is still difficult to fully utilize evaluation data in all dimensions, despite researchers constantly improving it. In this paper, aiming at this challenge, the mutual influence between users and movies is taken as the starting point, the possible self consistent logic between the two is explored, and a formula called Movie Popularity Weight (MPW) calculation formula is proposed to calculate the weight of movies. Then, taking the viewing time of users as the research object, the relationship between the change of viewing preference and the viewing time sequence of users is explored, and combined with the theory of Kendall correlation coefficient, a formula called Consistency in Viewing Sequence (CVS) calculation formula is proposed. Finally, the traditional similarity algorithm is improved by using the above research content, and the improved similarity algorithm is validated by using two datasets, one is the Netflix Prize dataset, while the other one is built based on publicly available data from Douban.com called Douban Movie K5 dataset. The experimental result shows that the improved similarity algorithm has higher recommendation accuracy.
Key words : recommendation algorithm; collaborative filtering; similarity algorithm; movie popularity; viewing time
引言
推薦系統(tǒng)[1]是人們借助計算機系統(tǒng)的高計算能力,,為解決用戶在面對信息過載時獲取有效信息的效率低下問題而設計的輔助系統(tǒng),其準確性極大程度上依賴于所采用的推薦策略,。在推薦系統(tǒng)的眾多策略中,,“協同過濾”是其中廣泛使用的一種策略[2],它以用戶的興趣偏好作為推薦依據,,并假設每個用戶未來的行為更有可能與該用戶過去的行為類似,。因此,以協同過濾策略為基礎的推薦系統(tǒng),,會基于與目標用戶相似的其他用戶對一些物品的評價來向目標用戶推薦物品[3],,具有良好的可解釋性。協同過濾策略的關鍵步驟是計算用戶間的相似度,,但由于傳統(tǒng)的相似度算法很容易受到冷啟動,、數據稀疏性,、時間衰變等問題的影響[4],因此許多研究人員對此進行改進并提出了一些新的相似性度量算法,。在研究物品的權值計算方面,,Leskovec[5]等人對Pearson相關系數算法的改進考慮到評價的分布具有長尾特征,即隨著時間的流逝,,部分受歡迎的物品將會得到更多用戶的評價,,而一些不受歡迎的物品,它們得到的評價數量則一直非常有限,。
作者信息:
錢澤俊,,劉潤然
(杭州師范大學阿里巴巴商學院,浙江杭州311121)
文章下載地址:http://forexkbc.com/resource/share/2000005903
此內容為AET網站原創(chuàng),,未經授權禁止轉載,。