《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于改進(jìn)YOLOv5的路面裂縫檢測(cè)方法
基于改進(jìn)YOLOv5的路面裂縫檢測(cè)方法
電子技術(shù)應(yīng)用
王向前1,成高立1,,胡鵬2,,夏曉華2
1.陜西高速機(jī)械化工程有限公司,,陜西 西安 710038;2.長(zhǎng)安大學(xué) 公路養(yǎng)護(hù)裝備國(guó)家工程研究中心,,陜西 西安710064
摘要: 針對(duì)現(xiàn)有裂縫檢測(cè)模型體積較大且檢測(cè)精度不高的問(wèn)題,,提出一種基于輕量化網(wǎng)絡(luò)的無(wú)人機(jī)航拍圖像裂縫檢測(cè)方法。首先,,使用MobileNetv3網(wǎng)絡(luò)替代YOLOv5的主干網(wǎng)絡(luò),,降低模型大小,;其次,,引入C3TR和CBAM模塊提高網(wǎng)絡(luò)表征能力,將損失函數(shù)替換為EIOU以提高模型的魯棒性,。實(shí)驗(yàn)結(jié)果表明,,該方法在自制數(shù)據(jù)集上獲得98.9%的精度,相較于原始YOLOv5提高1.2%,,模型大小減小51.5%,,檢測(cè)速度提高37%。改進(jìn)后的模型在精度,、大小和速度上均優(yōu)于Faster-RCNN等4種常見(jiàn)裂縫檢測(cè)模型,,滿足了裂縫檢測(cè)的實(shí)時(shí)性、輕量化和精度需求,。
中圖分類號(hào):TP391.41,;U418.6 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.234577
中文引用格式: 王向前,成高立,,胡鵬,,等. 基于改進(jìn)YOLOv5的路面裂縫檢測(cè)方法[J]. 電子技術(shù)應(yīng)用,2024,,50(3):80-85.
英文引用格式: Wang Xiangqian,,Cheng Gaoli,Hu Peng,,et al. Pavement crack detection method based on improved YOLOv5[J]. Application of Electronic Technique,,2024,50(3):80-85.
Pavement crack detection method based on improved YOLOv5
Wang Xiangqian1,,Cheng Gaoli1,,Hu Peng2,,Xia Xiaohua2
1.Shanxi Expressway Mechanization Engineering Limited Company, Xi′an 710038,, China,; 2.National Engineering Research Center of Highway Maintenance Equipment, Chang′an University,, Xi′an,, 710064,China
Abstract: Aiming at the problem that the existing crack detection model is large in size and the detection accuracy is not high, this paper proposes a crack detection method for UAV aerial images based on lightweight network. Firstly, the MobileNetv3 network is used instead of the YOLOv5 backbone network to reduce the model size. Secondly, the C3TR and CBAM modules are introduced to improve the network characterization ability, and the loss function is replaced with EIOU to improve the robustness of the model. Experimental results show that the proposed method obtains 98.9% accuracy on the self-made dataset, which is 1.2% higher than the original YOLOv5, the model size is reduced by 51.5%, and the detection speed is increased by 37%. The improved model is superior to four common crack detection models such as Faster-RCNN in terms of accuracy, size and speed, which meets the real-time, lightweight and accuracy requirements of crack detection.
Key words : road surface crack detection,;YOLOv5,;object detection;C3TR,;CBAM,;EIOU

引言

近年來(lái),我國(guó)公路蓬勃發(fā)展,,公路保養(yǎng)維護(hù)任務(wù)貫穿路面整個(gè)使用階段[1],。在裂縫出現(xiàn)初期及時(shí)實(shí)現(xiàn)病害檢測(cè)并修復(fù),可有效地減緩或防止初期裂縫的惡化,,對(duì)于提高路面使用壽命,、保障行車安全具有重要意義。

路面裂縫檢測(cè)方法主要有3種:傳統(tǒng)的人眼觀察識(shí)別方法主觀性強(qiáng),;常規(guī)圖像處理方法存在開(kāi)發(fā)成本大,、檢測(cè)精度不高等問(wèn)題;卷積神經(jīng)網(wǎng)絡(luò)相較于常規(guī)圖像處理方法具有泛化性好,、開(kāi)發(fā)成本低等優(yōu)點(diǎn),,但存在模型體積較大、檢測(cè)精度有待提高的問(wèn)題,。文獻(xiàn)[2]通過(guò)實(shí)驗(yàn)表明R-CNN系列,、SPP-net和SSD等現(xiàn)有卷積神經(jīng)網(wǎng)絡(luò)模型體積較大;文獻(xiàn)[3]證明YOLO的參數(shù)量較上述目標(biāo)檢測(cè)算法較少,。但YOLO[3-4]系列算法在實(shí)際應(yīng)用中依然存在模型體積大、裂縫檢測(cè)精度不高等問(wèn)題[5],。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://forexkbc.com/resource/share/2000005920


作者信息:

王向前1,,成高立1,胡鵬2,,夏曉華2

1.陜西高速機(jī)械化工程有限公司  2.長(zhǎng)安大學(xué) 公路養(yǎng)護(hù)裝備國(guó)家工程研究中心


雜志訂閱.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載。