《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于多模態(tài)特征融合的Android惡意程序檢測(cè)方法研究
基于多模態(tài)特征融合的Android惡意程序檢測(cè)方法研究
電子技術(shù)應(yīng)用
葛繼科,何明坤,,陳祖琴,,凌勁,,張一帆
重慶科技大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院
摘要: 現(xiàn)有Android惡意程序檢測(cè)方法主要使用單模態(tài)數(shù)據(jù)來(lái)表征程序特征,,未能將不同的特征信息進(jìn)行充分挖掘和融合,,導(dǎo)致檢測(cè)效果不夠理想,。為了提升檢測(cè)的準(zhǔn)確率和魯棒性,,提出一種基于多模態(tài)特征融合的Android惡意程序檢測(cè)方法,。首先對(duì)權(quán)限信息進(jìn)行編碼處理并將Dalvik字節(jié)碼數(shù)據(jù)可視化為“矢量”RGB圖像,然后構(gòu)建前饋神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)分別對(duì)文本和圖像模態(tài)表征的數(shù)據(jù)進(jìn)行特征提取,,最后對(duì)提取的不同模態(tài)特征向量分配不同的權(quán)重并相加進(jìn)行融合后對(duì)其進(jìn)行分類,。實(shí)驗(yàn)結(jié)果表明,該方法對(duì)Android惡意程序的識(shí)別準(zhǔn)確率和F1分?jǐn)?shù)都達(dá)到了98.66%,,且具有良好的魯棒性,。
中圖分類號(hào):TP309.5 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245881
中文引用格式: 葛繼科,何明坤,,陳祖琴,,等. 基于多模態(tài)特征融合的Android惡意程序檢測(cè)方法研究[J]. 電子技術(shù)應(yīng)用,2025,,51(1):62-68.
英文引用格式: Ge Jike,,He Mingkun,,Chen Zuqin,et al. Research on Android malware detection method based on multimodal feature fusion[J]. Application of Electronic Technique,,2025,,51(1):62-68.
Research on Android malware detection method based on multimodal feature fusion
Ge Jike,He Mingkun,,Chen Zuqin,,Ling Jin,Zhang Yifan
School of Computer Science and Engineering,, Chongqing University of Science and Technology
Abstract: Existing Android malware detection methods mainly use single-modal data to characterize program features, but fail to fully mine and fuse different feature information, resulting in unsatisfactory detection results. In order to improve the accuracy and robustness of detection, a method for detecting Android malware based on multimodal feature fusion is proposed. Firstly, the permission information is encoded and the Dalvik bytecode data is visualized as a “vector” RGB image. Then, a feedforward neural network and a convolutional neural network are constructed to extract features from the data represented by text and image modalities, respectively. Finally, different weights are assigned to the extracted feature vectors of different modalities, which are added and fused before classification. Experimental results show that the recognition accuracy and F1 score of this method for Android malware both reach 98.66%, and it has good robustness.
Key words : Android,;malware;multimodality,;feedforward neural network,;convolutional neural network

引言

隨著移動(dòng)互聯(lián)網(wǎng)技術(shù)的興起,移動(dòng)終端設(shè)備的安全性得到了廣泛的關(guān)注,。Android操作系統(tǒng)因其開(kāi)源性以及廣泛的市場(chǎng)應(yīng)用,,成為移動(dòng)終端設(shè)備的主要平臺(tái),然而這也使其成為惡意程序攻擊的主要目標(biāo),。Android惡意程序種類繁多,包括木馬軟件,、勒索軟件,、廣告軟件和間諜軟件等,這些惡意程序通過(guò)各種途徑入侵設(shè)備,,嚴(yán)重威脅用戶的隱私和數(shù)據(jù)安全[1],。因此,有效地對(duì)Android惡意程序進(jìn)行檢測(cè)對(duì)于保護(hù)用戶隱私數(shù)據(jù)及安全具有重要意義,。

現(xiàn)有Android惡意程序檢測(cè)方法在對(duì)惡意程序的特征表示和利用上不夠全面,,檢測(cè)效果不夠理想且魯棒性較差。為了能夠更加全面地表示惡意程序的特征以提高檢測(cè)效果,,本文提出一種基于多模態(tài)特征融合的Android惡意程序檢測(cè)方法,。該方法將多模態(tài)數(shù)據(jù)特征融合技術(shù)應(yīng)用于Android惡意程序分析領(lǐng)域,使用文本和圖像兩種模態(tài)數(shù)據(jù)分別表征程序的權(quán)限特征和Dalvik字節(jié)碼特征,,通過(guò)構(gòu)建前饋神經(jīng)網(wǎng)絡(luò)卷積神經(jīng)網(wǎng)絡(luò)對(duì)其進(jìn)行特征提取并對(duì)提取的特征向量進(jìn)行加權(quán)融合后分類,。

本文的主要工作及貢獻(xiàn)包括:

(1)提出一種基于多模態(tài)特征融合的Android惡意程序檢測(cè)方法,使用文本和圖像兩種不同的模態(tài)數(shù)據(jù)表征應(yīng)用程序的特征,;

(2)構(gòu)建了動(dòng)態(tài)權(quán)限表實(shí)現(xiàn)對(duì)權(quán)限信息的編碼處理,,同時(shí)實(shí)現(xiàn)了將Dalvik字節(jié)碼可視化為“矢量”RGB圖像;

(3)構(gòu)建了前饋神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)對(duì)不同模態(tài)的特征數(shù)據(jù)進(jìn)行特征提取,,對(duì)提取到的特征加權(quán)后相加進(jìn)行融合并分類,。


本文詳細(xì)內(nèi)容請(qǐng)下載:

http://forexkbc.com/resource/share/2000006284


作者信息:

葛繼科,,何明坤,陳祖琴,,凌勁,,張一帆

(重慶科技大學(xué) 計(jì)算機(jī)科學(xué)與工程學(xué)院,重慶 401331)


Magazine.Subscription.jpg


此內(nèi)容為AET網(wǎng)站原創(chuàng),,未經(jīng)授權(quán)禁止轉(zhuǎn)載,。