0 引言
近年來,,由于半導(dǎo)體技術(shù)、數(shù)字信號處理技術(shù)及通信技術(shù)的飛速發(fā)展,,A/D,、D/A轉(zhuǎn)換器近年也呈現(xiàn)高速發(fā)展的趨勢。隨著數(shù)字信號處理技術(shù)在高分辨率圖像,、視頻處理及無線通信等領(lǐng)域的廣泛應(yīng)用,,對高速,、高精度,、基于標(biāo)準(zhǔn)COMS工藝的可嵌入式ADC的需求日益迫切,。此外對于正在興起的基于IP庫設(shè)計和片上系統(tǒng)(SOC)集成研究來說,對低功耗,、小面積,、低電壓以及可嵌入設(shè)計的ADC核心模塊需求更甚。
由于高速,、高精度A/D轉(zhuǎn)換器(ADC)的發(fā)展,,尤其是能直接進(jìn)行中頻采樣的高分辨率數(shù)據(jù)轉(zhuǎn)換器的上市,對穩(wěn)定的采樣時鐘的需求越來越迫切,。隨著通信系統(tǒng)中的時鐘速度邁人吉赫茲級,,相位噪聲和時鐘抖動成為模擬設(shè)計中十分關(guān)鍵的因素。
為了保證電子系統(tǒng)的數(shù)據(jù)采集,、控制反饋和數(shù)字處理的能力和性能,,現(xiàn)代軍用電子系統(tǒng)對A/D轉(zhuǎn)換器的要求也越來越高。尤其是軍事數(shù)據(jù)通信系統(tǒng),、數(shù)據(jù)采集系統(tǒng)對高速,、高分辨率A/D轉(zhuǎn)換器的需求在不斷增加,時鐘占空比穩(wěn)定電路作為高速,、高精度A/D轉(zhuǎn)換器的核心單元,,對轉(zhuǎn)換器的信噪比(RSN)和有效位(ENOB)等性能起至關(guān)重要的作用,要保證高速,、高精度A/D轉(zhuǎn)換器的性能,,必須首先保證采樣編碼時鐘具有合適的占空比和很小的抖動。
1 時鐘穩(wěn)定電路
相位噪聲和抖動是對同一種現(xiàn)象的兩種不同的定量方式,。在理想情況下,,一個頻率固定的完美的脈沖信號(以1 MHz為例)的持續(xù)時間應(yīng)該恰好是1μs,每500 ns有一個跳變沿,,但這種信號并不存在,。如圖1所示,信號周期的長度總會有一定變化,,從而導(dǎo)致下一個沿的到來時間不確定,。這種不確定就是相位噪聲,或者說是抖動,。
抖動是對信號時域變化的測量結(jié)果,,它從本質(zhì)上描述了信號周期距離其理想值偏離了多少。通常,,10 MHz以下信號的周期變動并不歸入抖動一類,,而是歸入偏移或者漂移。數(shù)據(jù)轉(zhuǎn)換器的主要目的要么是由定期的時間采樣產(chǎn)生模擬波形,,要么是由一個模擬信號產(chǎn)生一系列定期的時間采樣,。因此,,采樣時鐘的穩(wěn)定性是十分重要的。從數(shù)據(jù)轉(zhuǎn)換器的角度來看,,這種不穩(wěn)定性,,亦即隨機(jī)的時鐘抖動,會在模數(shù)轉(zhuǎn)換器何時對輸入信號進(jìn)行采樣方面產(chǎn)生不確定性,。
從數(shù)據(jù)轉(zhuǎn)換器的角度來看,,編碼帶寬可擴(kuò)展到數(shù)百兆赫。在考慮構(gòu)成數(shù)據(jù)轉(zhuǎn)換器時鐘抖動噪聲的帶寬時,,其范圍是從直流到編碼的帶寬,,這遠(yuǎn)遠(yuǎn)超過制造商常常當(dāng)作標(biāo)準(zhǔn)時鐘抖動測量值引用的12kHz~20 MHz典型值。由于與抖動有關(guān)的是寬帶轉(zhuǎn)換器噪聲增大,,所以只要觀察數(shù)據(jù)轉(zhuǎn)換器噪聲性能的下降,,就可很方便地評估時鐘抖動。式(1)可確定由于時鐘抖動而產(chǎn)生的信噪比(RSN)極限
式中:f為模擬輸入頻率,;t為抖動,。求解t則式(1)變?yōu)槭?2)。如果已知工作頻率和RSN要求,,則式(2)就可確定時鐘抖動要求
只要在模擬輸入頻率增大時觀察到信噪比下降,,就可以很方便地使用數(shù)據(jù)轉(zhuǎn)換器(特別是模數(shù)轉(zhuǎn)換器ADC),通過快速傅里葉變換(FFT)技術(shù)計算出信噪比,。從總噪聲中減去ADC產(chǎn)生的噪聲,,就可以估算出時鐘抖動產(chǎn)生的噪聲,一旦知道噪聲系數(shù),,就可以計算出時間抖動,。
ADI產(chǎn)品與其他公司產(chǎn)品相比之所以能提高采樣性能,主要得益于對DCS電路的改進(jìn),。DCS電路擔(dān)負(fù)著減小時鐘信號抖動的作用,,而采樣時序就取決于時鐘信號。各家公司過去的DCS電路只能將抖動控制在0.25 ps左右,,而高性能新產(chǎn)品AD9446和LTC2208則將抖動降低到50 fs左右,。通常降低抖動就能夠改善信噪比,這樣便提高了有效分辨率(ENOB:有效比特數(shù)),,從而在達(dá)到16 bit量子化位數(shù)的同時,,實現(xiàn)100 Msps以上的采樣速率。如果不控制抖動就提高采樣速率的話,,將降低ENOB,,無法獲得希望的分辨率,也無法提高量子化位數(shù),。隨著高性能A/D轉(zhuǎn)換器的發(fā)展,,DCS電路向更高速度,、更小抖動和穩(wěn)定方向發(fā)展。
目前,,國外幾個大公司所設(shè)計的A/D轉(zhuǎn)換器中時鐘占空比穩(wěn)定電路的指標(biāo)如表1所示。由于國內(nèi)高速,、高精度A/D轉(zhuǎn)換器的設(shè)計技術(shù),、工藝技術(shù)和測試技術(shù)與國外先進(jìn)水平還有一定的差距,同時研制的時鐘穩(wěn)定電路性能指標(biāo)還不理想,,目前正在研制的時鐘占空比穩(wěn)定電路頻率為65 Msps,,抖動為2 ps。
時鐘占空比穩(wěn)定電路框圖如圖2虛框所示,,它由輸入緩沖放大器A,,開關(guān)Kl、K2和DLL組成,。
緩沖放大器A實際上只是對時鐘信號進(jìn)行緩沖,。當(dāng)采樣時鐘頻率低于DLL工作下限時,開關(guān)K1,、K2向上閉合,,DLL被旁路;開關(guān)K1,、K2向下閉合,,DLL開始作用,調(diào)節(jié)輸入時鐘信號相位,。由于DLL具有延遲鎖相的功能,,因此能很好地控制時鐘占空比,本設(shè)計中通過下文的具體電路能使輸入時鐘的占空比接近50%,,抖動小于0.5 ps,。
延遲鎖相環(huán)在普通鎖相環(huán)(PLL)的基礎(chǔ)上,用電壓控制延遲線代替了壓控振蕩器,,其結(jié)構(gòu)框圖如圖3所示,。其中CKin和CK4之間的相位差用一個鑒相器來檢測,產(chǎn)生成比例的平均電壓Vcont,,通過這個電壓的負(fù)反饋來調(diào)節(jié)每一級的延時,。對于大的環(huán)路增益,CKin和CK4之間的相位差很小,,即這四級電路將時鐘幾乎準(zhǔn)確地延時了一個周期,,從而建立了準(zhǔn)確的時鐘沿間隔。這種電路結(jié)構(gòu)被稱為延遲鎖相環(huán),,是為了強(qiáng)調(diào)它采用了一個電壓控制延遲線電路而不是VCO,。實際上,,為獲得無窮大的環(huán)路增益,需要在PD和LPF之間插入電荷泵,。
延遲線與振蕩器相比受噪聲較小,,這是因為波形中被損壞的過零點在延遲線的末端就消失了,而在振蕩器電路中又會再循環(huán),,因而產(chǎn)生更多的損壞,;其次,DLL中控制電壓的變化能迅速改變延遲時間,??傊琍LL中用到的振蕩器存在不穩(wěn)定性和相位偏移的積累,,因而在補(bǔ)償時鐘分別造成的時間延遲時,,會降低PLL的性能。因此DLL的穩(wěn)定性和穩(wěn)定速度等問題比PLL要好,。
2 電路設(shè)計
2.1 電路原理圖
圖4中,,虛框a中的電路為鑒相器(PD),S為鑒相器的控制端,,只有為低電平時,,鑒相器才起作用。壓控延遲線的輸出端VCDLout為鑒相器的輸入端,,這個信號與時鐘信號CLK進(jìn)行比較,,得出輸出信號A。由于S端低電平有效,,CLK信號就是與它的反相延遲信號與非進(jìn)入后面的鎖存結(jié)構(gòu),。其實就是檢測下沿與另一個下沿組成一個占空比接近50%的時鐘信號。A信號經(jīng)過一個電阻R傳入電荷泵中(其實在鑒相器的輸出端可以加一個反相器再加一個電容濾波),。虛框b為電荷泵,,由一個運算放大器組成。其中F端接一個電壓值為基準(zhǔn)的一半的電壓,,即為1.65 V,。
由m0、ml,、m2,、m3組成的鏡像是運算放大器的啟動電路,在運算放大器不工作時對電容C1充電,。電阻R1和電容C1構(gòu)成一個RC濾波器,,對信號起到濾波的作用。m4、m5,、m6三個晶體管構(gòu)成DLL的延遲線(VCDL),。在這個電路中只需要一級延遲就足夠了。在這個延遲線旁邊的電容C2的值越大,,則延遲越多,。C2旁邊三個反相器構(gòu)成一個鎖存結(jié)構(gòu),它的主要作用就是輸出一個比較理想的方波,。
2. 2電路仿真與分析
對圖4的電路,,在Cadence spectre環(huán)境下進(jìn)行了仿真。輸入電平的周期為4 ns,,時鐘占空比為45%,,基準(zhǔn)電壓為3.3 V,。運算放大器與電容c.組成電荷泵,。電荷泵的輸出見圖5。時鐘穩(wěn)定電路穩(wěn)定工作,,Vout有30 mV的波動,,Vout波動越小表示壓控延遲線時鐘輸出的抖動越小。
此外,,還可以得到,,運算放大器的閉環(huán)增益為75.074 9 dB。0 dB對應(yīng)的相位為一109.818°,,所以它的相位裕度為70.182°,。顯然,該運算放大器的參數(shù)是比較好的,。
圖6為時鐘占空比調(diào)整情況,。從圖中可以看出該DLL能調(diào)整占空比到49.4%(1.977 4/4≈49.5%)。實際上該時鐘穩(wěn)定電路在時鐘周期4 ns時,,能調(diào)節(jié)25%~75%的占空比接近于50%左右,;而在時鐘周期10 ns時,可調(diào)節(jié)的范圍達(dá)到10%~90%,。
圖7為延遲鎖相環(huán)的輸出眼圖,。其實在A、B之間有幾百條上升沿,。從圖中可以看出,,峰.峰值抖動為341.8l fs。對于250 M這個抖動值已經(jīng)相當(dāng)小了,。
3 版圖設(shè)計
利用JAZZ提供的PDK進(jìn)行工藝接口,,版圖設(shè)計由該公司提供相應(yīng)規(guī)則,具體針對線寬、接觸孔,、通孔,、線距等作了相關(guān)規(guī)定,并且設(shè)計過程中充分利用該公司提供的Pcell作相應(yīng)的版圖設(shè)計,,這樣相應(yīng)工作得到了很多的簡化,。具體的設(shè)計規(guī)則涉及IP問題,故略去,。本文給出時鐘穩(wěn)定電路的整個版圖,,如圖8所示。
該芯片總面積為0.74 mm×1.44 mm,。其中,,最左邊的CLK一,CLK+為輸入端,,本文只用到CLK一一端作為輸入端就足夠了,;右上角的CHKl、CHK2為輸出的大管子,;最中間為運算放大器,。
4 結(jié)語
本文介紹了用一個簡單的延遲鎖相環(huán)來實現(xiàn)高速A/D轉(zhuǎn)換器中的時鐘穩(wěn)定電路。該延遲鎖相環(huán)具有兩個作用:(1)調(diào)節(jié)采樣時鐘占空比,;(2)控制采樣時鐘的抖動,。本文以一些典型的基奉模擬IC為設(shè)計基礎(chǔ),著重對延遲鎖相環(huán)電路的各個單元電路設(shè)計逐一進(jìn)行了分析和研究,,并對總體電路進(jìn)行了功能和參數(shù)的模擬分析,,其結(jié)果較為滿意。在此基礎(chǔ)上進(jìn)行了工藝及版圖設(shè)計和分析,,在完成工藝版圖設(shè)計后,,采用DRC、ERC,、Calibre,、Extract和LVS等CAD工具對版圖進(jìn)行了參數(shù)提取及驗證工作,保證了電路和版圖的一致性,。